APPLYING SOFTWARE ENGINEERING TECHNIQUESIN THE DEVELOPMENT
AND MANAGEMENT OF LINEAR AND INTEGER PROGRAMMING APPLICATIONS

Fernando Costa, Leonardo Murta, and Celso C. Ribeir
Computing Institute (IC), Universidade Federal Fluemise, Niter6i, RJ 24210-240, Brazil
Emails: flpcosta@ic.uff.br [Costa]; leomurta@ic.toif.[Murta]; celso@ic.uff.br [Ribeiro]

Original version: August 20, 2013
Revised:

Accepted:

Abstract

This work addresses characteristics of softwarér@mments for mathematical modeling
and proposes a system for developing and managaugls of linear and integer programming
problems. The main features of this modeling emrirent are: version control of models and
data; client-server architecture, which allows the&eraction among modelers and decision
makers; the use of a database to store informationit the models and data scenarios; and the
use of remote servers of optimization, which allowssolve the optimization problems on
different machines. The modeling environment prepo# this work was validated using
mathematical programming models that exploit ddfgrcharacteristics, such as the treatment of
conditions for generating variables and constrathis use of calculated parameters derived from
other parameters, and the use of integer and cantsvariables in mixed integer programming
models, among others. This validation showed thatgroposed environment is able to treat
models found in various application areas of Openat Research and to solve problems with
tens of thousands of variables and constraints.

Keywords: Mathematical Modeling, Linear Programmirigteger Programming, Software
Engineering, Version Control.

1 INTRODUCTION

In a company, the Operations Research team devehgphematical models for solving
optimization problems of various business area® fiofessionals who make the decisions in
these business areas use such models throughvwaasofapplication, where they can analyze
different scenarios to support the decisions thaelo be made. These professionals do not need
to know the methods of mathematical modeling. Timbgract with a software application that
encapsulates the techniques of Operations Resaadcallows the processing and the analysis of
the data involved in decision-making. In this wthe Operations Research professionals must
know the techniques for solving optimization prob$e to provide applications to decision
makers that generate appropriate responses togpnsbh the company.

The quality of a decision support system is messmot only by the results it provides,
but also by the ease of interaction among usegjcagion, and data, and by the agility of its
development, because time is an important vari@btEcision-making. Decision makers expect
that Operations Research applications provide stardi results on a timely basis, which brings
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profit to the business areas. Thus, some challeimgésveloping this kind of application can be

identified, such as: the management of data neémtethodeling a problem, the concurrency

control over the mathematical models developmergijr tassociated data, and the obtained
results, and the development of human-computerfage (HCI), which enables the interaction

of business professionals with the decision supptem.

Therefore, the process of developing a matheniatiodel, which is used in the decision
making chain of an organization, can be associafé the process of software development.
The area of Software Engineering has conceptsctratalso be applied in the construction and
maintenance of mathematical models and decisiopatigystems. According to PRESSMAN
(2006), there are five phases in software developnigat must be performed to create a
software: communication, when the project initiadesl requirements are identified; planning,
responsible for estimating the cost and preparing groject schedule; modeling, when the
software and its architecture are designed; coctsdry when the software is coded and tested;
and deployment, responsible for delivering thevgalfe to its users and to plan the maintenance.

The development of a mathematical model shareses@milarities with the
aforementioned Software Engineering phases. Ams/isuch as gathering requirements from
users (in this case, the decision makers), degsigithe solution, implementing, testing,
deploying, and maintaining can also be found indteation of decision support tools. Thus, the
motivation of this work is to support the developmef Operations Research applications,
mainly involving mathematical programming modelidgaling with information of the business
areas, and generating results to assist in deaisaking.

Configuration Management techniques can be addptedpport some of these activities.
According to ESTUBLIER (2000), Configuration Managent is a field of Software
Engineering that controls the evolution of compsystems. Systems evolve over time, since
their requirements change and defects are foungorant contributions of Configuration
Management are version control, managing reposgmf software artifacts, and change control,
which supports the software development processrdoking issues from their request up to
their implementation in the software.

The aim of this paper is to present a softwarerenmnent for modeling linear and integer
programming problems, dealing not only with the elody activity, but also with the life cycle
of mathematical models and associated data. Intiaddithe environment must support
information sharing among its users. This environinecalled GeMM - Manager of
Mathematical ModelsGerenciador de Modelos Matematicas Portuguese) — must meet the
needs of both modelers and decision-makers. Tha meatures of GeMM are: modeling of
Linear Programming (LP), Integer Programming (I&)d Mixed-Integer Programming (MIP)
problems; versioning of mathematical models and@ated data; application generation from a
mathematical model for data entry and analysisesiilts; use of an integrated database to store
the models and data; and generation of the matheahatodel documentation. In the remainder
of this text, we shall refer to a MIP problem agemeralization that also encompasses both LP
and IP problems.

This paper is organized in five sections. The sdcgection presents some background
concepts and related work. The third section intoes our approach for managing the life cycle
of mathematical programming models. The fourthisagbresents some implementation details
of the GeMM environment and a case study of howntlbeleling environment is used to solve
optimization problems. Finally, the fifth sectionnsmarizes the contributions and limitations of
this work.



2 BACKGROUND AND RELATED WORK

We performed a survey and a systematic literateveew (KITCHENHAM, 2004) to
identify the main research challenges and solutieteted to the conception of mathematical
programming models and the management of theirciffde. This survey involved Operations
Research graduate students and professionalsaitsgoal was to identify how decision support
systems are currently being conceived and mairdaigiring us a picture of the state-of-the-
practice. The literature review was intended to plement the survey with a picture of the state-
of-the-art, providing an overview of the existingpnks on the conception and management of
mathematical programming models. All in all, thevay and the literature review focused on
answering the same question: what are the mostrtamgorequirements for conceiving and
managing mathematical programming models, consigdooth the model developer and the
decision maker perspectives?

FOURER (2011) contributes to define the nomenotatand the software elements
involved in solving Linear Programming (LP) and MdInteger Programming (MIP) problems.
His work focused on both industry and academiaeatify and classify the major tools involved
in solving this type of problem. The tools can bkassified as solvers and modeling
environments. Solvers are tools that search favlatien of a given problem. They receive an
instance of a MIP problem as input and provide dpéimal solution as output. Modeling
environments are tools that interface between tper&ions Research professionals and the
solvers, providing general and intuitive ways tgmss symbolic models. They usually offer
features that allow importing and processing dgtmerating problem instances for solvers,
analyzing result, and interfacing with other apgtions, such as Database Management Systems
(DBMS) and spreadsheets.

GEOFFRION (1989) describes five characteristicssirdble for computer-based
modeling environments to support Operations Rebkeapplications: to deal with the entire
modeling life cycle; to consider the decision makeecessities; to support the model evolution
throughout its existence; to adopt a model debnitianguage independent from the languages
used to solve the problem; and to allow easy resonranagement. These characteristics act as
general guidelines of what is expected for a modedinvironment.

Additionally, MURPHY et al. (1992) present a serief representations for MIP
problems, such as matrix generators, algebraiceseptations, structured modeling, and
database schemas. Matrix generators, such as ONWIERLY, 2001), were the first adopted
representation. These generators provide a progeldunguage that allows the creation of MPS
files (IBM CORPORATION, 1975), which represent arstance of a MIP problem and are
interpreted by most solvers. While the MPS formiédves efficient representation of sparse
matrices, it makes modeling and debugging hard (BROet al., 1988). Algebraic
representations, such as GAMS (BISSCHOP and MEERAL982) and AMPL (FOURER et
al., 1990), describe models as mathematical expressbeing quite general and concise.
Structured modeling, introduced by GEOFFRION (198&ms at developing a general
specification to represent, in an unambiguous atyessential elements of a variety of models.
Finally, database schemas consider two distinctnfingled requirements: the need to register
information about the mathematical model structamd the need to register the problem data
and its results.

As one can note, a prominent feature is the separbetween data and model, primarily
using database applications and spreadsheets. LE#1) stores mathematical models apart
from the data of problem instances. Models shoeldyéneral to deal with a range of common
problems. FOURER (1997) also exploits the use tdlmises to handle mathematical models,
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presenting database structures for mathematicglammming models. Today, DBMSs are widely
used in organizations, managing and centralizing keormation. Therefore, the decision
support systems must somehow be integrated witdetiméormation repositories.

Going in a different direction, MAKOWSKI (2005)stiusses the necessary requirements
for developing modeling environments. Accordindiie work, the model development life cycle
iIs composed of the following phases: requiremelntgagion, design, construction, testing, use,
review, maintenance, documentation, model analysslts analysis, and model evolution. The
author states that the existing modeling envirortsienly meet one or two phases of the whole
model development life cycle. Issues such as dabaepsing, data sources documentation,
change tracking, models integration, and accestratoare especially critical for complex or
large-scale models. The following activities wederitified as poorly supported by the existing
modeling environments: version control over the elagecification, preparation of data for the
definition of parameters, generation of model ins&s binding the model specification with a
specific data set, and the use of multiple viewartalyze the results.

For instance, MATURANA et al. (2004) use the math&écal model as input to
automatically generate the user interface and #t@base structure of a decision making system.
This strategy supports agile development of OpamaRResearch applications, increasing the
productivity and the easiness for providing solugido the decision makers of an organization.
However, their approach lacks an underlying versiontrol infrastructure, making it hard to
evolve the model and the generated system.

Besides the use of databases as an integratibfotomodels, their respective instances
and the problem data, FOURER (1998) adopts welntdohy as an access infrastructure to
optimization systems. Moreover, FOURER et al. (30fafbpose the use of an optimization
server that receives jobs via XML (eXtensible Markianguage) files transported through web
services. This kind of service is useful to isoldie modeling language and the solvers from the
decision making system itself. These works show Boftware Engineering can be used as an
enabling technology to the construction of OperatiBesearch applications.

The survey and the literature review showed thatfollowing features are relevant for
the development of modeling environments: modelstances, and data separation; integrated
databases to store models and data; interfaceexttrnal software, such as solvers; graphical
user interface for data input and results analysist efficient communication with solvers. We
could not identify a research or commercial modgénvironment for MIP that fulfills the needs
of both modelers and decision makers, allowingitteraction of such professionals throughout
the mathematical model and its data life cycle.sTétenario is especially difficult because
models, instances, and data evolve over time, déimgia consistent versioning solution.

3 MANAGEMENT OF MATHEMATICAL MODELS

In this section, we introduce our approach for agamg mathematical programming
models, named GeMM. It is intended not only to jleva tool for writing mathematical models
and equations, but also to control the life cydi@ anodel, since its establishment and until its
use by the decision makers and evolution. GeMM tatbp client-server architecture, stores its
information in a database, provides version cortvddoth mathematical models and associated
data, and enables information sharing among ugehe ®ystem, observing concurrency control.
The remaining of this section presents the architecof GeMM and discusses model
formulation, data management, and, finally, vergiontrol of both models and data.



3.1 ARCHITECTURE

Two distinct roles in the development of mathepatiprogramming models for
supporting decision making are considered: modatel decision maker. The modeler is an
Operations Research professional who knows in ldethe modeling techniques to handle
optimization problems in a specific domain. The isien maker does not have specific
knowledge of Operations Research, but knows theagtoniata and has the necessary skills for
using optimization models to support decision-mghkinocesses in the organization.

Thus, the system described in this article wasgded according to a client-server
architecture. In this architecture, it is possitdiehave modules to meet different functions that
are interconnected through a database. Furtherntioie,architecture allows the system to
support multiple users, assuming the aforementior@ds. Figure 1 shows the overall
architecture of the system. Basically, modelergratdt with the application by creating and
maintaining mathematical programming models in ptdesolve optimization problems. On the
other hand, decision makers populate the systern daoimain data, with the possibility of
creating different scenarios for the same optinomaproblem, and visualize the results obtained
by solvers. With this structure, each user haspunopriate environment to perform her work,
either modeling or using a model, but these enwviremis shared data through a single database.

Another important element in the architecture he pptimization servers. For large
problems that require high processing power in otdefind optimal solutions in appropriate
time, machines with dedicated hardware and softwane usually used for running the
optimization processes. Furthermore, the sharinguch machines is highly desirable to solve
different problems at different moments. Since skttgp computer may not have adequate
capacity to perform the required processing, GeMlkes use of optimization servers. The
application server is responsible for managing eiecution of optimization algorithms by
controlling the distribution of tasks among optiatinn servers that actually run the solvers.

\ Decision Maker
@?D "

Modeler

Decision Maker

Modeler

Database
(model and data)

Optimization servers

Figure 1: Basic architecture of the system
5



3.2 MATHEMATICAL MODELING

The main function of GeMM is to support the modgliof linear and integer
programming problems. In the GeMM approach, problawedeling is done directly in the
system, using formularies, and is stored in a de@pbwhich also stores instance data. Thus, in
this architecture, the model and the data can beedhamong users, allowing integration and
collaboration during modeling. The interaction beén users of GeMM is discussed in Section
3.5.

Modeling elements are designed according to asgelepresentations, especially AMPL
(FOUREREet al, 1990). GeMM uses a database to store MIP modkks.information and data
models are in the same database structure, bytendently stored. This separation is important
because it allows the creation of different inseenof the same optimization problem from a
mathematical model, by changing, for example, ahly input data. GeMM uses five main
elements for modeling MIPs: sets, parameters, biasa constraints, and objective function.

Sets are collections of well-defined and distinlgfects relevant to the problem. Each set
contains indices associated with it, allowing thedel to reference a generic element belonging
to the set. A very common type of set is, for exeeng sequence of integers. In GeMM it is also
possible to define subsets.

Parameters are invariants used in modeling. Tohegist of values directly informed by
the users (i.e., input data) or calculated fronegpression. This difference exists only from the
point of view of the modeling environment, whiclsiggs the value of the parameters before the
optimization process begins. From the point of vivihe solver, all parameters are input data.
They can represent scalar values, when they aradexed, or arrays, when they are indexed by
the elements of one or more sets.

Variables hold values that are calculated by tp&#nozation process. Like parameters,
variables can also be indexed by the elementstef A&ariable can be either continuous, integer
or binary, since the system allows the modeling liokar, integer, and mixed integer
programming problems. Variables may have upper &wer bounds. Constraints are
represented by linear equations or inequalitiesViBeallows the use of generating conditions
for model variables and constraints. The objecfiugction is a linear function that should be
either maximized or minimized.

An important feature of GeMM is the separatiormigsin the data and the mathematical
model. The structure of the GeMM database musbheta store the model, the input data, and
the results for every MIP. The data structure preskin the class diagram of Figure 2 represents
the mathematical programming model.

In this diagram, thé&roject class represents a MIP to be solved. A projeaagsall the
model elements that must be created for the coregmesentation of the problem. The model
elements are represented by the cMesslelElementind its subclasses in the diagram of Figure
2. Set Variable Constraint Parameter, ObjectiveFunction One or more indices can be
associated to each set, whose representation ie madhe classndex The clasdndexable
generically represents the model elements that laggeciated indices and therefore can be
indexed by them.

This data structure is used to handle and storthematical models in GeMM. We
remark that it includes only the model definitiom,, it does not address the input data and the
results. For example, it is possible to identifyiethsets are defined, but it is not possible to
know which elements compose these sets and whag¢s/glan be assigned to the indices. The
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structure depicted in Figure 2 also does not addike versioning model, which will be
discussed later.

Project ModelElement
1 * 5‘3
1 * * * i i i
Set Index Indexable ObjectiveFunction
)
Variable Constraint Parameter

Figure 2: Class diagram representation of the mathgcal programming model

3.3 DATA REPRESENTATION

An instance of an optimization problem comprisets of the parameter values. A solver
receives a problem instance as input, applies en@mare solution methods, and returns the
results (FOURER, 2011), which are the values assigio the variables and the objective
function value.

As described in Section 3.1, GeMM users are dividgo two main roles: decision
makers and modelers. This latter role should na@ngk the model formulation, i.e., the
definition of the variables, constraints, and obyecfunction, but should work with the values of
the elements of the sets, with the parameter vahreswith the results.

3.3.1 DATASTRUCTURE

Each mathematical model needs data in a diffesémicture. A particular modeling
project may require the creation of one or mors,sehose indices can index several parameters
and variables. The approach used in GeMM assodradesing elements with the primary keys
of entities in the database. Each database entityahset of attributes that characterize its
primary key.

In the following, we illustrate our approach witholoss of generality with a linear
programming problem in its canonical form (BAZARARQ77):

4 1
Minimize D c,.x; S
i=1
. 2
Subject to Y a;.x,=b;, i=1,..,m @
i=1
X;=0 j=1,..,n (3)

The indices andj, that appear in equations (1), (2) and (3), represet elements. The
indexi represents an element that belongs to thes€l, 2, ...,m}, as shown in expression (2),
and the index denotes an element that belongs to theJset{l, 2, ...,n}, as shown in



expression (3). An instance of this model is defibgy setd = {1, 2, 3} andJ = {1, 2} and a
tabular structure for storing them can be seenguarg 3.

I J
1 1
2 2

3

Figure 3: Data structure of sets | and J

Once the elements of each set are known, we daredbe data structure associated with
those sets. When modeling the MIP in its canorfieah we identify the parametecs bi, and
a;j, and the variablej. Figure 4 shows the three entities created teestoe data and variable
parameters, which are: the entity whose primaryikdfie combined values ofindj, the entity
whose primary key is the valueipfand the entity whose primary key is the valug of

Entity | eJ Entity | Entity J
i i aij i by i G X
1 1
2
3

WIWIN|IN[FP|PF
NIFRP|INIFP[N|PFP

Figure 4: Data structure of parameters and variable

In this example, the parametgris indexed by the indiced] | andj O J. Therefore, the
database entity that stores the values of thisnpeter must have a primary key combination of
elements of the sets and J. In the same way, we developed the data strudturdhe b
parameter, which must be an entity whose primayg kae the elements of the $eMoreover,
parametec; and the variablg; should be entities whose primary keys are the mesntfeset].
Thus, the columnsandj of the entities defined in Figure 4 are foreigykeespectively to the
columnsl andJ of the data structures defined in Figure 3.

The GeMM approach enforces that, for a given nma#ieal programming model, there
will always be an entity database for each of g#ts,swvhere its elements are stored. The values
of the elements compound the primary key of thé&yersince there are no repeated elements in
the same set. Also, there will always exist a dadabentity for each different combination of
indices associated with the values of parameteds/arniables. These entities must have an index
for each attribute that composes their primary kayg another attribute for each variable or
parameter that has the same combination of ind&késariables or parameters that have the
same combination of indices, in the same ordert imaxge a corresponding attribute in the same
database entity, as for variabdeand parameteg;, in the previous example. An entity database
without attributes associated with an index is &@isated to hold the values of the elements that
are not indexed, as the objective function, parametind non-indexed variables.

However, this way of handling the data of mathecahipprogramming models requires a
different data structure for each model. This osdmecause each mathematical model has its
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own characteristics, such as different set defingiand indices, different modeling elements,
and different combinations of indices that indexapaeters and variables. Thus, each model
managed by GeMM needs a different database schersire the data associated with it. As
GeMM is intended to manage many different MIPs,ametdeling is a natural solution to store
and handle the data structures needed for the syoaglardless of how they are modeled and
their application area.

3.4 METAMODELING

The idea of metamodeling the database, which sad by JEUSFELD and JOHNEN
(1994), consists in building a generic data stmectio represent a logical data model into a
relational database that meets defined specifieatid-igure 5 shows the data structure for
logically storing the database schemas, i.e., saBemetamodeling. This class diagram
represents the schemas of the database. A schersigtsmf all entities within the same domain.
TheEntity class represents existing entities and is compofatiributes.

1

Entity
Schema @
1 * >
) 1
1 1 1
* * & W
Record Attribute | 1 « 1 ForeignKey
] 0.1
1 — Primaryey .
1
’ Value
I I I |
Boolean Integer Real String

Figure 5: Data structure for storing metamodelirthemas

The Attribute class represents the properties of the attribagesciated with the entities
in the metamodel. This class should contain theessary information about integrity for the
database management systems, such as the pogsibddsuming a null value, for example. The
relationships between entities are representedasgesPrimaryKeyandForeignKey The class
PrimaryKeyindicates which attributes of an entity belongheir respective primary keys. The
ForeignKeyindicates which entity attributes represent linkth other related entities.

Figure 5 also presents tRecordclass, which is the logical representation of\a af a
database table. Its role is to group the valuabefattributes that compose a single record. The
Valueclass and its subclasses are identified only Rgeord(row) andAttribute (column). It has
the function of storing the data and its subclassesused in accordance with the attribute type:
boolean, integer, real, or string, for example sTdéta structure allows the identification of two
types of metamodeling classes: the classes thagsemt the structure (which é&ehemakEntity,
Attribute, PrimaryKey and ForeignKey and those that represent the data (whichReeord
Valug and its subclasses).



Metamodeling allows using a unique schema databmastore different data models.
GeMM uses metamodeling to work with the data stmes that store and manage data from
mathematical models. The flexibility provided by tam@odeling is necessary to enable changes
in the definition of the models without having tbamge the schema of the database, allowing
GeMM to manage more than one model in the samdasd¢a The structure proposed in GeMM
to handle data models through metamodeling is shovAgure 6. This structure was developed
from the basic structure of metamodeling, showRigure 5, and adapts as necessary to manage
the data of the mathematical programming modelse Tlasses that are subclasses of
ModelElementire used to represent the mathematical model.

Entity Case
2
?1 1 1 1
Primaryey ]
Al 0.1 Record
Set
1
0.1 *
Parameter 1
Attribute
ModelElement |]— 0.1
Variable 1
Value
0.1
Constraint
01 | | | |
ObjectiveFunction Boolean Integer Real String

Figure 6: Data structure using metamodel

In this approach, the entities needed to repretbentiata structure of the mathematical
models are handled by the cldsstity. As described earlier, the primary keys of ergitege
attributes related to indices of the sets, whiatkeinthe modeling elements. The foreign key
concept was omitted from the diagram in Figureigcesthe attributes related to the indices of
the sets are the only ones that may be foreign. Kéys model elements that can receive a value,
such as parameters and variables, are associatlecamwviattribute of an entity. The entity that
holds a given attribute is defined by the combora®f indices that index the associated model
element.

Therefore Entity, PrimaryKey andAttribute are classes directly related to the modeling
elements and define the data schema for a pantiocudghematical model. Each model, once
specified, has only one data scher@ase Record,Valug and its subclasses are used to store
data associated with the model.

The Valueclass is used to store a value of one model eleriie Attribute class knows
the data type of the model element and Yadue class knows how to store it. The model
elements that have one or more indices must haveraeinstances o¥alue one for each
combination of the values of the indices that indbese elements. ThRecord class is
responsible for grouping all values of the samétyeritaving the same primary key. Finally, the
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Caseclass is responsible for grouping all data inrglei set of data. It allows different scenarios
with different parameter values, and hence differesults, for the same mathematical model.

3.5 VERSION CONTROL

An important feature of GeMM is the versioningmathematical programming models
and their scenarios with associated data. GeMMwalldifferent users to collaborate designing
and maintaining the mathematical models, managistance of data, and optimizing problems.
GeMM has versioning as a key element in its degdgiccompany this interaction of users with
the mathematical models and data, and to ensurantbgrity of information. Among its
responsibilities is saving the history of changed managing the evolution of models and data
over time, which enables control over correctivd parfective maintenance.

3.5.1 MODEL VERSION CONTROL

CONRADI and WESTFECHTEL (1998) discuss the chamastics and classifications of
version models for software configuration managam@n important point of this type of
system, which includes version control, is the migbn of the product space. The product space
describes the complete structure of what shouldeogioned. In the case of GeMM, the product
is a mathematical model consisting of model elemelttis also fundamental to define the
versioning space, which determines which items rbastersioned, how versions are organized,
when new versions are created, and the granulafritye versioned items. The granularity of the
versioned items is defined as the size of the ssiallersioned object.

In the GeMM approach, the evolution of mathematicendels occurs by creating
different versions of a given modeling project. &sion of the modeling project is a group of
versions of the model elements that compose it. grhaularity of versioning in GeMM is the
model elements, i.e., sets, parameters, variabtesstraints, and objective function have their
independent versions. Each of these elements isidodlly versioned and the version of a
modeling project is given by the most recent versibits modeling elements. A new version is
created due to the need of modifying one or mordehelements within the project.

We used the example of a linear programming probleits canonical form to illustrate
the versioning of mathematical models in GeMM.His texample, we created three versions of
the same mathematical model. First, we createdntbdeling project called “LP problem in
canonical form” and its first version, containifgetsetd andJ, the parameters; andb;, the
variablex;, the constraint, and the objective function, aswshin Figure 7. At this point, all
model elements are in their first version.

Then, suppose that we have identified an errdhénmodel implementation of the in its
canonical form: for example, the paramedgthas been modeled as an integer and not as a real
number, as expected according to expression (8r Afeation of the first version, there is still
another modification to be made with respect torttoelel presented in expressions (1), (2), and
(3): the costs of the variables were erroneouslylemented as a constant. This second version
creates a parametey and changes the expression of the objective fomctd include this
parameter. Since the project is in its second oBrsso are the objective function and the
parametec;. This change led to the creation of a second eersf this modeling project, which
appears in Figure 8.

We observe that all model elements associatedth&lsecond version are still in the first
version, except the parametgt ¢; and the objective function. The modeling eleménéd did
not change are associated with the first and secersions of the modeling project.
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LP problemin
canonical form

V1

Set | {i} — Integer : V1

~

Set J {j} — Integer : V1

I\

Parameter a— Integer : V1

7

~

Parameter b— Real : V1

\l

Variable >j<— Real : V1

Constraint (.:: Vi1

Objective Function — Minimize : V1

Figure 7: Initial version of a linear programminggblem in the canonical form

Each element has its individual version, but thiér cycle is always associated with a
particular modeling project. Once edited, the eletnwversion is replaced by the same version of
the project after the change. Thus, it is possibledentify which are the versions of a single
model element and, also, given a version of theainogl project, which elements were changed
in that version. It is important to notice that thersioning information related to a model
element is not altered nor replicated. The modgbirggect only links to each specific version on
model elements. This link is broken only when thirea change in the element and a new
version is created.

This versioning strategy is defined by CONRADI awESTFECHTEL (1998) as
Product Versioningin which versions of the elements are within tilebal version of the
modeling project. With this type of versioning, tkenventional reading “Version 2 of the
objective function” should instead be read as “dhgctive function in the second version of the
LP problem in its canonical form”.

As a client-server and multi-user application, GeMillows more than one user to
concurrently access a particular modeling proj€bis requires a policy for concurrency control
in order to prevent loss of information. Accorditlg ESTUBLIER (2001), a scenario with
users simultaneously working over the same pragaats toN+1 different product versions, one
for each user and one for the original produdthdise changes occur in parallel, it is necessary to
merge all of them to generate the final product.

However, according to MENS (2002), the need to domdifferent versions of the same
project depends on the selected concurrency comteghanism. With pessimistic concurrency
control, in which only one user at a time can mpeéiements of a project via lock mechanisms,
changes do not occur in parallel and are not stligemerge. On the other hand, in optimist
concurrency control, where users change the projguarallel, the process of merging different
modifications of complex objects may become ermonrp and counter-productive
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(PRUDENCIO et al., 2012), being necessary to comltire syntax and the semantics of the
product in question. Due to that, GeMM adopted ipastic concurrency control, by locking the
project that is being changed. For this reason, Bales not address merge of modifications.
However, the fine granularity adopted by GeMM akotlve identification of differences between
two versions in terms of added, removed, or chamgede! elements.

LP problemin
canonical form

V1 V2
Set | {i} — Integer : V1

\\

Set J {j}- Intege!: V1

\\

Parameter @ — Integer : V1 4[ Parameter a- Real : V1 ]

Ii

Parameter b— Real : V1

\
J

Variable X Real : V1 p N\
—_———{ Parameter JC— Real : V2

Constraint C: V1 \ J

Objective Function — Minimize : V1 Objective Function — Minimize : V2

Figure 8: Second version of the linear programmpngblem in the canonical form

Once a user starts editing the mathematical modéeMM, the entire project is locked
for editing. When the modification is completede thiser can release the project lock to allow
others to edit it, through the creation of a newsian. Figure 9 shows the modeling project in its
third version. The creation of this version was iraied by a change being made by the user
“Modeler 1. The earlier versions V1 and V2, whibhve already been released, can only be
accessed for reading. Further modifications magnhde by creating a new version.

While “Modeler 1" is still editing the third veisn, shown in Figure 9, the other users can
only read the model. This situation persists UMibdeler 1” releases or discards the lock. When
a version is released, it cannot be removed oe@dithus, it is guaranteed that the whole life
cycle is registered. Before the release, elemeantsbe freely added, changed, and removed to
the current version of the project by the user ti@ts the lock. However, once released, any
change in the project requires the creation ofva version.

3.5.2 DATAVERSION CONTROL

In addition to model version control, GeMM alsmyides data version control. Each
user, in the role of decision maker, can creata dases for any released version of the modeling
project, once its structure cannot be further medifEach case has its versions and the same
concept of concurrency control used for the moslelpgplied. The product to be versioned is the
data associated with the models, namely, the elen@nthe sets and the parameters values.
Figure 10 shows an example of the association legtwlata versions and model versions.
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LP problemin
canonical form

V1 \//
Commitec versior read F ‘ l\/lodeler 2

L | . . .
1 o Version in editiol Modeler 1

Figure 9: Concurrency control for a modeling prajec

The concurrency control mechanism is also pessaon{dnce a data case is being edited,
it is locked and other users can only read it. Waelata case is released, it can only be modified
by the creation of a new data case version. Ireit@mple shown in Figure 10, two data cases
were created for the third version of the “lineaogramming problem in its canonical form”,
which has been released. “Case 1" has a certaiof setlues for model elements, and is in the
second version. As the user “Decision Maker 1" d#tieg the “Case 1", the user “Decision
Maker 2" cannot change it in parallel. This usen @aly view and copy its information to
another data case. In this example, the “Decisiakevl 2” created “Case 2” with its own data to
edit.

Once the versions of the data cases have beeaseeleand cannot be modified or
removed, the historical data used for making denssis also stored. Thus, it is possible to trace
back the optimization model and the data that natéid a particular decision. This kind of
traceability is fundamental for reproducibility aadditability of the results, and is called data
provenance in the literature (FREIRE et al., 2008).

Decision

Commitec versior - = ../
"= o Vi >
_  Version in editiol -
T}z
5k X .
Vi o G

| | T~ - Decision
- Maker 1

LP problemin
canonical form

Figure 10: Versioning of a modeling project and@sated data
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4 IMPLEMENTATION AND USE OF GEMM

The previous section presented the main charatitsriof our approach, while this
section details the implementation issues for teeetbpment of the modeling environment.
GeMM was implemented using the Java programminguage, which has many development
tools and libraries available, in addition to beipgrtable to different platforms. It also has
interoperability with other languages, includingau@d C++, for example.

In order to illustrate how problems can be modéle@eMM, we considered the Problem
of Scheduling Delivery Orders (PSDO) of oil produdtVe present the optimization model in the
following, in order to illustrate how the modelilgymade in GeMM. This example shows how
users can interact with the environment to modé?$41

This section presents how GeMM stores and prosesdgermation of mathematical
programming models and their data in the data &tres presented in the previous section, also
using PSDO as a guiding example. Subsequentlyntplementation features of version control
are detailed for the cases of both the mathematcalel and the data. Finally, we describe the
characteristics of server optimization, an impdrtalement of the GeMM architecture. The
servers are responsible for receiving requestsofimization of a model and a data case,
generating instances of MIPs, and passing thenltes.

4.1 MATHEMATICAL MODELING

In the context of the PSDO, a company is respbmditr delivering products to its
customers and ensuring that their demands are Thet.delivery is made by road and the
objective of the company is to schedule deliverespecting bounds on demand, customer
inventory, and carrying capacity, minimizing thestinvolved in these deliveries. It must be
solved for a given time horizon.

The mathematical model of this problem was dewopased on the inventory
management system presented by BERTAZZI. (2005), whose main feature is the control of
customer inventories being done through a distiebutcenter. In this policy of inventory
management, the distribution center knows the itorgnlevels and the demands of their
customers. Thus, it can determine the transpoityoi order to meet the constraints of storage
and demand of its customers, minimizing the totatoof transportation. BERTAZZét al.
(2005) show that this policy inventory managemaeghificantly reduces transportation costs
compared to the traditional model, in which eaddntlmanages its inventory alone.

The problem of scheduling the delivery of ordeysan integer programming problem.
The time horizon is split into discrete periodscigeriod is referenced by an indesf the set
PERIODS. We use the indexo refer to a customer of the set CUSTOMERS, ardritiexp to
represent a product of the set PRODUCTS. The meaisidn variables arBelivery, which
represents the quantity in kilograms of prodpcd be delivered to customerin periodt; and
Stockc, which denotes the inventory in kilograms of prado in customerc in periodt; and
IfDeliveryye, a binary variable that indicates whether or nadéliver producp to customec in
periodt. The objective of this problem is to reduce ttasportation cost, which minimizes the
total number of deliveries.

The main input data for this problem afeemang the demand for produgs of
customerc in periodt; TransportCapacity the maximum amount that can be transported in
period t; InitialStock,, the initial inventory of producp for customerc; MinStocl. and
MaxStock., lower and upper bounds on the inventory of progdor customec.
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To introduce this model in GeMM, the first steptascreate a modeling project. At this
time, the only attributes required are the namedestription of the modeling project, as shown
in Figure 11.

ID containg W <—— Filter

Mame Description <—— List of elements
Schedule_Delivery_Orders Fru:ujeu:t of Schedule Delivery Crders |
Ha £
= <—— Select element

Schedule_Delivery_Orders .

— detail
Description
Project of Schedule Delivery Orders LS

L
[ Insert ] [ Change | [ Delete ] [ Clean ] <—— Commands

Figure 11: Modeling project

GeMM’s screens have a standard format, simildhéoscreen shown in Figure 11. At the
top there are fields to filter the elements in lieethat appears below and contains elements of
the same type. When selecting an element fromighehe form displays its details. Through the
form, it is also possible to edit or to insert nelements in the list. Fields marked in bold and
with an asterisk are required, such as the fiddhein Figure 11. Commands that can be applied
to the selected element appear at the bottom afdiezns.

Next, the model is built by defining each elemdifte construction of the model is done
through the creation of the elements in the formegaof the GeMM, where each model element
has a specific screen where the user can inpuaitiibutes. Unlike some modeling languages,
such as GAMS (BISSCHOP; MEERAUS, A., 1982) and AMHOURER et al, 1990), in
which the mathematical models are textually cre#tteaugh a specific language, GeMM builds
the model using a formulary for each one modeliegent.

Usually, the first elements to be defined are setd their respective indexes. Other
elements, like parameters, variables, and congétamay be indexed by indexes defined for
these sets. Three sets have been defined for théelmof the PSDO: PRODUCTS,
CUSTOMERS, and PERIODS, with indexgsc, andt, respectively, as shown in Figure 12. The
attributes of a set are its name, its descriptioa,definition of the data type elements, and their
index identifiers. The possible data types aregete and real numbers, strings, and dates.
Subsets can also be defined. At this time, onlydif@ition of the sets is done, as their elements
are not part of the model, but of the data cases.

Each parameter has a name, a description, anthayge. Again, integers, real numbers,
strings, and dates are the available data typeseTdre two types of parameters: primary, whose
values are defined directly in the data case (stscmput data) or calculated, whose values are
evaluated from expressions that may have conshtaadt®ther parameters.

The arithmetic operators that can be used in sgpes of calculated parameters are
shown in Table 1. The analysis of expressions iNMKeas done with the help of the open source
library JEP (JEP JAVA, 2011). It uses the operatdr§able 1 and allows the addition of new
functions by creating a class in Java that implam#re interfaces defined by the JEP API.
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MNarme Description Data Type Subset

PRODUCT Products that may be ordered by customers. String
CUSTOMER. Customers that perform requests, Btring

PERICD Periods considered in scheduling of requests. Integer

Hame * Data Type *
PRODUCT Siring
Subset

Description

Products that may be ordered by customers.

Index

Index
]

Figure 12: Sets of model

Variables are declared in GeMM, in the same wayasameters. They can be indexed by
the indices of the sets and their types may bemaemiis, integer, or binary. This model involves
two types of variables: binanjfelivery,) and continuousOelivery,.: and Stocle). The
modeler should also define upper and lower linotsefach variable.

Table 1: Arithmetic operators

Operator Description
+ Sum
- Subtraction
% Modulo
/ Division
* Multiplication
A Power
() Parentheses

The main attributes of a constraint are its desionp indexes, the definition of the left-
hand side (LHS) expression and the right-hand @rieS) expression. GeMM supports both
equality (=) and inequality<(or >) constraints. With the information of the congitaj GeMM
generates its representation in LaTeX (LAMPORT,1201

The objective function (maximization or minimizat) must have a name, a description
and the coefficients of the variables. GeMM alsogyates the representation in LaTeX of its
expression.

This form-based modeling strategy adopted by Gelhdlgl the advantage of not requiring
knowledge of a modeling language or a programmamgliage. As it is more structured than a
textual language, it guides the modeler throughnéheessary information, alleviating problems
with incomplete model definitions. However, GeMMutw be easily adapted to allow importing
models defined in textual languages.

17



4.1.1 GENERATION CONDITIONS

Generation conditions are important for model dingg (FOURER et al, 1990).
Generation conditions are boolean expressionscratise constants, parameters, and indices to
determine the condition in which the variables andstraints must be generated for a specific
instance of a MIP. Generation conditions can hakithraetic operators and logical and
comparison operators, that is presented in TableeMM also allows the use of generation
conditions for variables used in constraints anthéobjective function.

Table 2: Logical and comparison operators

Comparison Logical

Operator Description Operator Description
> Greater than ! Not
>= Greater than or equal tp && And
< Less than Il Or
<= Less than or equal to
== Equal to
I= Not equal to

4.1.2 MODEL DOCUMENTATION

GeMM allows the automatic generation of a LaTeXuwentation with all data provided
about the problem, obtained from the informatioovmted by users during the development of a
model. The attributes, such as name and descripfitte modeling elements in GeMM screens,
allow the model to be documented during developpeemiding an extra effort for this task.

4.1.3 REPRESENTATION OF THE MATHEMATICAL MODEL

In Section 3 we presented the data structure iesegpresent mathematical models. This
representation is used by GeMM both for procestiegapplication data and for storing it in a
database. These structures are completely tramdpar€&seMM users, because the interaction
with the modeling environment is done through farms

Figure 13 shows the class diagram that represeatsematical models in GeMM. This
diagram details how GeMM treats and stores modets database. For better understanding of
the data structures, we used UML class diagramO@Bet al, 2005) with the data types of
the Java language. Thus, the description of tregnrent of the mathematical model is made by
classes, which are mapped to database tables.

The main class is th@roject which aggregates all the elements of a models It
composed of model elements that are representedthby classesModelElement and
ModelElementVersigrwhose difference regards the treatment of veeslaattributes. Although
version control in GeMM will be treated later inighsection, classodelElementVersioms
important at this time, since it controls all th&ributes of model elements. Despite not having
attributes inModelElementclass, since all of them belong tdodelElementVersignit is
important to identify that different object versgohelong to the same model element. The basic
attributes of each modeling elements is its nam@chvmust be a unique identifier, and its
description, used to document the user model.

The subclasses dflodelElementVersioare Set Indexable andObjectiveFunctionThe
Setclass represents the sets that can be createdniatteematical model. Each set may have
18



different indices, represented by thwlex class. Indices are used to refer to an element of a
given set in the model, so an index must have @nidantifiers. TheDbjectiveFunctiorclass

has the attribute direction, which determines wéetthe problem is of maximization or
minimization.

Project ModelElementVersion
- name : String > . ModelFlement - name : String
- description : String 1 1 N description : String
N
Set 1 Indexable ObjectiveFunction 1
A AN - direction : String
1 subset |
Parameter Variable 1 Constraint
- data type : String - condition : String - lower limit : String
A - upper limit : String - RHS : String
. - lower limit ; String q
Index * ? !

-id: String ‘ | | LHS

* Calculated Primary Continuous Integer Binary

- expression : String

*
* * *

Equation Constraint Equation OF
* Equation

- coefficient : String
- condition : String

Figure 13: Class diagram of the mathematical model

The Indexableclass represents the modeling elements that ac@iveean index in its
definition. The relationship between an index amelihdexableclass should be ordered, since
the order of the indices is important during tha@leation of the expressions. Model elements
that can receive indices afearameter Variable, andConstraint The class diagram shown in
Figure 13 describes two types of parametBrémary and Calculated It also identifies three
types of variablesContinuous Integer, andBinary. The Variable class has expressions for the
upper and lower limits, and, optionally, a genemtcondition. The thirdndexabletype is
Constraint which has an expression of its RHS and may ase la generation condition.

Finally, the classEquation and its derivativesEquationConstraintand EquationOF
represent the expression of the LHS of constraiasswell as the objective function. The
EquationConstraintlass represents the terms of the LHS of the cainstr It refers to an object
of the Variable class and has an expression of the coefficientuoh germ in the constraint.
Likewise, theEquationOFclass represents expression terms of the objefttnation. It refers to
an object of thé/ariable class and also has an expression of the coeffiokestich term in the
objective function. Whenever GeMM generates araimst of a MIP to the solver, both the LHS
of the constraints and the expression of the olgdtinction are interpreted as the sum of terms
composed of the variables and their coefficientse Toefficients can be expressions containing
constants, parameters, and operators.
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The terms of the equations may also have a gemerabndition, indicating a situation
where a particular term exists in a constraint rorthe objective function. The relationship
betweenEquationandIndex which represents the indices of a particularalde in the LHS or
in the objective function, have the order attribgiace the order of the indexes has significance
in modeling.

4.2 DATA CASES

According to FOURERet al. (1990), the values of the elements in sets andnpaters,
which compose a data case, must be combined wittathematical model to generate an
instance of a MIP.

Once model of the problem of scheduling delivergeos has been implemented, GeMM
automatically creates the data structure (to steeanformation) and the screens (for data entry
and viewing results). Figure 14 shows the screenpot the values of primary parameters of the
model. Through these screens the decision makerem&r and edit parameter values that are
necessary for the problem optimization.

Setg | Parameters

PERIOD | General | PRODUCT_CUSTOMER._PERIOD | PRODUCT _CUSTOMER

PRODUCT CUSTOMER PERIOD Demand[p,c,t]
fuel
fuel
fuel
fuel
fuel
fuel
fuel

ij

IR

i) ey preny gy ey gy ey g

I, B e Ul e U ]
]

PRODUCT * CUSTOMER * PERIOD *
fuel w1 w1 »

Demand[p,c,t] *
22

Clean

Figure 14: Data of primary parameters

With the screens generated by GeMM, it is posdiblerovide the necessary data in order
to create a problem instance, which is afterwarassferred to a solver. In situations where a
huge amount of data must be informed, GeMM alloles massive inclusion of data via the
command “Massive Insert”, which can be seen in fegl4. With this command, the data is
imported from text files or spreadsheets. GeMM aJsoerates the screens for displaying the
results. It shows the summary of the results, Withvalues of the objective function and of the
variables.

4.2.1 REPRESENTATION OF DATA CASES

To treat the data cases, the structure is camdbMorking with any model that can be
prepared using GeMM. Figure 15 shows the classamador representing data cases. This class
diagram shows in detail how GeMM implements theadatses and how they are persisted in a
database. We also use UML class diagrams with dkee tgpes of the Java language to detail the
implementation.
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As described in Section 3.4, GeMM uses the conoceptetamodeling to treat the data
case of the mathematical models, since each diffenedel needs its data in a specific structure.
Thus, with the use of metamodeling, GeMM has alsidgtabase schema to work with any MIP

model.

Version

* |

Case

- name : String

- description : String

IndexValuelnteger

-value :int

IndexValueReal

-value : douhble

IndexValueString

-value : 5tring

IndexValueDate

-value : Date

- wersion :int
- date : Date

- description : String
- can edit: boolean 1

q Project

* ’_LL‘
I CaseVersion

*

IndexValue |

1

- name : String

- description : String

*

*

PrimaryKey

- order :int

*

AnributeValue

| Indexable |

1

*

1 *

1

AttributeValueBoolean

AtributeValueDate

AttributeValuelnteger

AttributeValueReal

AttributeValueString

-value :boolean

-value : Date

-value tint

-value : double

-value : String

Figure 15: Class diagram of data cases

The main classes afeaseandCaseVersionCaserepresents a specific scenario created
by a user (a decision maker), and has only a nameaalescription. A data case belongs to a
particular version of the modeling project in GeMEAach data case can have multiple versions,
which are represented by the cl&sseVersion

The classindexValuerepresents the possible values for the indices, the elements
belonging to the sets. The values of the elemdritsecsets are associated with a specific version

of a data case.

Its subclasskglexValuelnteger,IndexValueReal IndexValueString and

IndexValueDatare used to implement the data type defined ®s#t. Thdentity, Attribute, and
PrimaryKeyclasses allow the connection of the mathematicaleghwith the metamodeling data
structure. They have no direct relationship wita thformation of data cases, but represent the
metamodeling data structure. Each different contlmnaof indices must be associated with an
object of theEntity class. In the example of the PSDO there are dbstbaee different entities:
the entity of model elements indexed onlytplgy p andc, and by thep, ¢ andt.

The PrimaryKeyclass indicates which indices of an entity repmeslee primary key. It
has an attribut@rder, since the order of the indices of the modelingmadnts is important.
Modeling elements that are indexed by the samexindat in a different order, should be
associated with different entities. TREmaryKeyclass relates thentity class with th&Set class
The Attribute class is a modeling element, which is indexed H®y ¢combination of specific
indices of the entity it belongs. Thusttribute has a particular relationship withdexablewhose
subclasses ar€onstraint Variable andParameter andEntity. The Attribute class is analogous
to a column in a database table.
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In the example of the PSDO, the attribute indexedy by t is the parameter
TransportCapacity The primary key of this entity is the indexThe attributes indexed Ipyand
c are the parametetnsitialStock,, MinStock. andMaxStock.. The primary key of this entity is
given by indicep andc. Finally, the attributes indexed Ipyc andt are the variableBelivery,
Stockc: andlfDeliveryy and the paramet®&emandg.. The primary key of this entity is given by
indicesp, ¢ andt. Figure 16 shows a class diagram that represkatsttucture for storing the
model data of PSDO. GeMM generates theses classe=at the instances of this model.

Entity pct

- ==yariakle== Delivery : double
- <=yariahle== Stock : double .
- ==yariahle== |fDelivery . hoolean

- ==zparameter== Demand : double

*

* 1

Set PERIODS
1 1
- =2jndex=>1:int
Set PRODUCTS Set CUSTOMERS
1
- =<index== p . String - =<index== ¢ : 5tring
1 1
1
* * Entity t
Entity pc - ==zparameter== TransportCapacity : double

- ==parameter== |nitialStock : douhle
- ==parameter== MinStock : double
- ==parameter== MaxStock : douhle

Figure 16: Class diagram of the entities of PSDO

The attributes of metamodel entities, i.e., theues of parameters, variables, and the
LHS evaluated constraints, are treated by clas$ributeValue and its subclasses
AttributeValueBoolean AttributeValueDate AttributeValuelnteger AttributeValueReal and
AttributeValueStringSubclasses dittributeValueare used according to the data type defined for
the parameters or the type of variables and canstra’ heRecordclass is used to group all the
attributes that are indexed by the same index viala® entity. An object of this class represents
a database record, or a row of a table. Rieeordindexclass is a ternary relationship between
Record, IndexValue and PrimaryKey which is used to store the index values that welig
identify a specific record of an entity.

ClassesndexValue Record,RecordIndexandAttributeValueof the class diagram shown
in Figure 15 are directly related to a version dfadéa case. The objects of these classes vary with
different data cases and versions of the same matieal model. The classeBntity,
PrimaryKey andAttribute represent the metamodeling data structure to bahdl data cases of
a model. Thus, the objects of those classes ragrése data structure of a given mathematical
model. They do not change if the mathematical megl@lot changed, as the same objects are
capable of dealing with any data case.

4.3 VERSION CONTROL

Besides allowing the modeling of linear and integgogramming problem and
generating screens and data structures to harelath cases of specific optimization problems,
GeMM also provides version control. As discussefbiige version control is applied for both
mathematical models and their data cases.
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4.3.1 VERSION CONTROL OF MATHEMATICAL MODELS

Versioning is handled at fine grain and is basedtle entities of the domain. When
versioning at fine grain, we are allowed to induatly control each model element, assigning
independent version numbers when some change o€assModelElementVersigrwhich can
be seen in the class diagram shown in Figure Jpfesents the concrete versions of model
elements and their attributes that are under versomtrol. TheModelElementlass represents a
particular model element in a mathematical modegjardless of its versions. It clusters the
versions of the same model element, as well amatlel element attributes are under version
control. Thus, if a model element is renamed, f@aneple, GeMM considers it as a change that
motivates the creation of a new model element @rrassociated with the same model element,
keeping track of the old names.

ModelElement fg

1 "

Project ModelElementVersion
- name : 5tring - name : String *
- description : String - description : String

*

1
version Dfﬁ}e element  elementin ploject version

* 1

Version

- version int
User q * - date : Date -
- description : String
- can edit: hoolean

- name : String
- login : String
- password ; String

Figure 17: Class diagram version control of mathéca models

The class diagram shown in Figure 17 representsdéte structure used to version
control of mathematical models. As seen before,Rimect class is the identification of the
optimization problem being solved. It has attrilsusech as name and description. The details of
the mathematical model are associated with a versidhe modeling project, represented by
classVersion Each version is associated with a GeMM user. clagsModelElementVersiohas
two relationships with the clad&rsion one that indicates the version of the model eteraad
another that indicates which versions of the maateject contains the model element. Thus,
GeMM considers model elements as unities of vensgiiMURTA et al, 2007), once each
model element within a modeling project has its owension history. The association named
“element in project version’in the diagram of Figure 17 indicates which vemnsi@f model
elements belong to a version of the modeling ptojEte version of the model element itself is
represented by the associatituersion of the elementin the same diagram. Thus, given a
version of the modeling project, GeMM can identihe associated mathematical model and
enables the creation of data cases for it.

GeMM implements pessimistic concurrency controlnoathematical models using the
“can edit” attribute ofVersion classThis attribute indicates when the version of adeimg
project may or may not be edited. If it can be exdlithe change can only be made by the user
who created the version. Any other user cannotthdiproject until the current user commits or
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discards his version. Each modeling project careltaly one editable version at the same time,
since the current version of GeMM does not addpessllel editing for the same modeling
project. When the modeling project does not haweealitable version, any user can create a new
version. If this is the first version of the moawji project, GeMM creates an empty version.
Otherwise, GeMM creates a new version associatddtive versions of the model elements that
belong to the previous project version. This wayinherits all previous model elements and
allows the user to perform modifications.

The version numbers of the model elements arel @guess than the version number of
the modeling project, once the creation or edibdm model element implies the edition of the
modeling project. This strategy is also adopteatimer conventional version control systems,
such as Subversion (THE APACHE SOFTWARE FOUNDATI@N11). GeMM uses two basic
commands: “commit” and “discard”. In the case &f thommit” command, GeMM understands
that the version is finished and changes its “dditi attribute to false, indicating that any user
can only edit the model element by creating a nexgion. Thus, the version that was committed
is unchangeable. In the case of the “discard” comin&eMM deletes the version of the
modeling project that is under edition. This comdhaan only be applied over versions that are
editable and is restricted to the user who creit&&rsions of modeling projects that have been
committed can no longer be altered, removed, aradiked, ensuring consistency to the change
history of mathematical models. A user can alwaykenchanges over modeling projects by
creating a new version.

4.3.2 VERSION CONTROL OF DATA CASES

GeMM also implements versioning of data casesdhatbe created for the mathematical
models. The class diagram shown in Figure 18 deserihe data structure that implements the
versioning of data cases. TBaseVersiorclass represents a version of a given data caskel
same way we do with mathematical models, all inftion contained in the data cases are
associated with a particular version. Consequettily,unity of versioning is a data case, and
then the data within a case does not have individgerdion numbers and are always associated
with a particular version of a data case. Twseclass represents only the identification of a
case of a mathematical model. Its attributes ast pame and description, which are not
versioned. Similarly, th€aseVersiortlass is taCaseasVersionis to theProject

Project

- name : String
- description : String

[

User 1 . Version 1 N Case
- name : String :Ez';'_ugélzt - name : string
- login : String T - description : String
- password : String - description : String
i - can edit: hoolean

1

T‘

CaseVersion

*

Figure 18: Class diagram version control of datasea
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Version control and concurrency are done in theesaay as for mathematical models.

The “can edit” attribute inherited froversionindicates when a version of the data case can be
edited or not. When the value of this attributérige, only the user who created the version can
edit, commit, or remove it. When the user comnfits\tersion of the data case, another user can
edit it, creating a new version of the case. Thay,va new version is always necessary to edit the
data case. If the case does not have any versieNlMscreates a blank version. Otherwise,
GeMM creates a new version referencing all datsgmed in the last existing version. The
removal of the versions of data cases can onlydme dby the user who created them and only
before committing, because once it is committedaih no longer be deleted or changed, thus
maintaining the historical data associated withhmatatical models. This mechanism enforces
that only the latest version can be removed or gbadnif it has not already been committed.

4.4 OPTIMIZATION SERVERS

The optimization servers are responsible for perfiog the optimization requests for the
MIP modeled using GeMM. The process starts when Kefelceives a request from a user to
optimize a version of a data case. It generatesigtance of an MIP from the mathematical
model and data case, transfers this instance dtvarsreceives the problem solution, and returns
this solution to the user. According to the arattitee shown in Figure 1, the optimization
servers can be deployed on separate computers. Gabtivallows a monolithic installation, in
which the modeling application and the optimizatsenvers are in the same computer.

Independently of the deployment strategy, thenogation server is responsible to handle
requests of optimization and to communicate wittsodver. However, when the modeling
application and the optimization server are depdapedifferent machines, requests to solve data
cases are made using web services through the rketite web service is used only to notify
the server that a case should be optimized. Thanmdtion regarding the data case and its
mathematical model are obtained directly from theadase, as shown in Figure 19. The results
are also stored in the database.

1. Creates mathematical model, 3. Requests available
enter data in a case and requests optimization servers to
optimization solve the problem 5. Generates an instance
of a LP problem, passes
@ > > to the solver and gets
results
User A P
Application Optimization

4, Gets the model servers

2. Stores the model and data case

and data case

Database

6. Stores the results

Figure 19: Scheme for performing optimizations

Figure 20 shows a class diagram that represeniisstéance of an MIP. GeMM uses the
mathematical model, whose structure is depictedrdramatically in Figure 13, and the data
case, whose structure is depicted diagrammaticalligure 15, to generate an instance of the
MIP. Although the class diagram shown in Figuréhd8 some classes with the same name of the
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class diagram shown in Figure 20, they are differg&nce the first diagram shows the definition
of the mathematical model and the second is aanostof an MIP.

With the data structure shown in Figure 20, GeMah send the data to the solvers
through their API, when it is installed and configd in the same machine, or generate files in
the format developed for CPLEX, but also used lmepsolvers.

Constraint * 1 1
-RHS - double < Instance LP problem |gp——o
- operator : Enum {=, <=, ==}
) 1
1
L ObjectiveFunction 1
LHs - direction : Enum {min, max}
v
1 1 *
Expression Term Variable
- evaluated value : double 1 - coefficient: double | * 1 ?
Binary Integer Continuous
-value : hoolean -value ;int -value : double
- upper limit ; int - upper limit : double
- lower limit ; int - lower limit : double

Figure 20: Class diagram for representing an instaof a LP problem

5 CONCLUSION

The main goal of this paper is to describe theettgpment of the GeMM environment for
modeling linear and integer programming problentsaiins not only to treat the modeling
activity, but also to support the management of ltfee cycle of mathematical models and
associated data.

According to MAKOWSKI (2005), features such ass¥en control and configuration
management of the mathematical models are poopioeed, although they are quite relevant.
We could also conclude that characteristics sudh@aseparation of data and model, the use of
databases, the integration with other softwareueof graphical user interfaces for data entry
and results analysis (both performed by decisiokarsd, and the efficient communication with
solvers are critical in developing this type of kgadion.

The main contributions of this work, compared witle existing modeling tools, are its
architecture in a client-server style, which allothe sharing of information and interaction
among modelers and decision makers, and its altdityontrol the evolution of mathematical
models and data cases through version control. GeMikkfore presents two special differential
features: GeMM is a multiuser environment (in whjgeople can work on different versions
through an integrated environment) and is not covezk by conflicting changes (thanks to
version control). Other modeling tools do not supgloese features, requiring users to externally
perform this control.

The use of version control brings concepts of \Bafé Engineering to mathematical
modeling. It helps on managing the life cycle ofdals and data used to obtain the results,
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which are essential in the decision making proadsan organization. Such control leverages
auditing the results, since all results are assediavith a particular version of a model and a
particular version of a data case. Moreover, GeMitbmatically generates an application from
a mathematical model for the input data and resultdysis. The proper treatment of data cases
and their versions allows GeMM users to performoues analyses on models without modifying
their definitions.

The GeMM architecture also segregates models, @et@s, and solvers. This separation
is recommended by RAMIREEt al. (1993). The use of metamodeling to store inforaratf
mathematical models and the associated data irbatsta also provides contributions to the
treatment of general persistence of mixed integegramming problems. FOURER (1997) and
DUTTA and FOURER (2008) use relational databasestdie specific problems, with structures
that meet a given problem or class of problemshése cases, for each model, a new database
schema must be created. GeMM uses the same datatlasma for storing different data
models. Despite being in the same structures,dhejogically separated.

An important contribution of this work is the stture, shown in Figure 13, to treat linear
and integer programming models. This structurewadlb a general representation of the MIPs
and was the basis for the data processing througtamodeling and for the versioning of
mathematical models. Through this data structueViI®@ makes problem modeling independent
of the interface with users. We adopted formulateesmplement such interface in the current
version of GeMM, but this interface can be replaseate the representation of the problem is
made by the structure shown in Figure 13.

Another important feature provided by GeMM is tieneration of the documentation of
mathematical models in the LaTeX format. The matueral representation of the objective
functions and constraints proved to be very ustfulinderstand and document models. This
documentation can be exported as a PDF file, whmmpletely describes the mathematical
model.
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