

1

APPLYING SOFTWARE ENGINEERING TECHNIQUES IN THE DEVELOPMENT
AND MANAGEMENT OF LINEAR AND INTEGER PROGRAMMING APPLICATIONS

Fernando Costa, Leonardo Murta, and Celso C. Ribeiro

Computing Institute (IC), Universidade Federal Fluminense, Niterói, RJ 24210-240, Brazil

Emails: flpcosta@ic.uff.br [Costa]; leomurta@ic.uff.br [Murta]; celso@ic.uff.br [Ribeiro]

Original version: August 20, 2013

Revised:

Accepted:

Abstract

 This work addresses characteristics of software environments for mathematical modeling
and proposes a system for developing and managing models of linear and integer programming
problems. The main features of this modeling environment are: version control of models and
data; client-server architecture, which allows the interaction among modelers and decision
makers; the use of a database to store information about the models and data scenarios; and the
use of remote servers of optimization, which allows to solve the optimization problems on
different machines. The modeling environment proposed in this work was validated using
mathematical programming models that exploit different characteristics, such as the treatment of
conditions for generating variables and constraints, the use of calculated parameters derived from
other parameters, and the use of integer and continuous variables in mixed integer programming
models, among others. This validation showed that the proposed environment is able to treat
models found in various application areas of Operations Research and to solve problems with
tens of thousands of variables and constraints.

Keywords: Mathematical Modeling, Linear Programming, Integer Programming, Software
Engineering, Version Control.

1 INTRODUCTION

 In a company, the Operations Research team develops mathematical models for solving
optimization problems of various business areas. The professionals who make the decisions in
these business areas use such models through a software application, where they can analyze
different scenarios to support the decisions that have to be made. These professionals do not need
to know the methods of mathematical modeling. They interact with a software application that
encapsulates the techniques of Operations Research and allows the processing and the analysis of
the data involved in decision-making. In this way, the Operations Research professionals must
know the techniques for solving optimization problems to provide applications to decision
makers that generate appropriate responses to problems in the company.

 The quality of a decision support system is measured not only by the results it provides,
but also by the ease of interaction among users, application, and data, and by the agility of its
development, because time is an important variable in decision-making. Decision makers expect
that Operations Research applications provide consistent results on a timely basis, which brings

2

profit to the business areas. Thus, some challenges in developing this kind of application can be
identified, such as: the management of data needed for modeling a problem, the concurrency
control over the mathematical models development, their associated data, and the obtained
results, and the development of human-computer interface (HCI), which enables the interaction
of business professionals with the decision support system.

 Therefore, the process of developing a mathematical model, which is used in the decision
making chain of an organization, can be associated with the process of software development.
The area of Software Engineering has concepts that can also be applied in the construction and
maintenance of mathematical models and decision support systems. According to PRESSMAN
(2006), there are five phases in software development that must be performed to create a
software: communication, when the project initiates and requirements are identified; planning,
responsible for estimating the cost and preparing the project schedule; modeling, when the
software and its architecture are designed; construction, when the software is coded and tested;
and deployment, responsible for delivering the software to its users and to plan the maintenance.

 The development of a mathematical model shares some similarities with the
aforementioned Software Engineering phases. Activities such as gathering requirements from
users (in this case, the decision makers), designing the solution, implementing, testing,
deploying, and maintaining can also be found in the creation of decision support tools. Thus, the
motivation of this work is to support the development of Operations Research applications,
mainly involving mathematical programming modeling, dealing with information of the business
areas, and generating results to assist in decision making.

 Configuration Management techniques can be adopted to support some of these activities.
According to ESTUBLIER (2000), Configuration Management is a field of Software
Engineering that controls the evolution of complex systems. Systems evolve over time, since
their requirements change and defects are found. Important contributions of Configuration
Management are version control, managing repositories of software artifacts, and change control,
which supports the software development process by tracking issues from their request up to
their implementation in the software.

 The aim of this paper is to present a software environment for modeling linear and integer
programming problems, dealing not only with the modeling activity, but also with the life cycle
of mathematical models and associated data. In addition, the environment must support
information sharing among its users. This environment, called GeMM – Manager of
Mathematical Models (Gerenciador de Modelos Matemáticos, in Portuguese) – must meet the
needs of both modelers and decision-makers. The main features of GeMM are: modeling of
Linear Programming (LP), Integer Programming (IP), and Mixed-Integer Programming (MIP)
problems; versioning of mathematical models and associated data; application generation from a
mathematical model for data entry and analysis of results; use of an integrated database to store
the models and data; and generation of the mathematical model documentation. In the remainder
of this text, we shall refer to a MIP problem as a generalization that also encompasses both LP
and IP problems.

 This paper is organized in five sections. The second section presents some background
concepts and related work. The third section introduces our approach for managing the life cycle
of mathematical programming models. The fourth section presents some implementation details
of the GeMM environment and a case study of how the modeling environment is used to solve
optimization problems. Finally, the fifth section summarizes the contributions and limitations of
this work.

3

2 BACKGROUND AND RELATED WORK

 We performed a survey and a systematic literature review (KITCHENHAM, 2004) to
identify the main research challenges and solutions related to the conception of mathematical
programming models and the management of their life cycle. This survey involved Operations
Research graduate students and professionals. Its main goal was to identify how decision support
systems are currently being conceived and maintained, giving us a picture of the state-of-the-
practice. The literature review was intended to complement the survey with a picture of the state-
of-the-art, providing an overview of the existing works on the conception and management of
mathematical programming models. All in all, the survey and the literature review focused on
answering the same question: what are the most important requirements for conceiving and
managing mathematical programming models, considering both the model developer and the
decision maker perspectives?

 FOURER (2011) contributes to define the nomenclature and the software elements
involved in solving Linear Programming (LP) and Mixed Integer Programming (MIP) problems.
His work focused on both industry and academia to identify and classify the major tools involved
in solving this type of problem. The tools can be classified as solvers and modeling
environments. Solvers are tools that search for a solution of a given problem. They receive an
instance of a MIP problem as input and provide the optimal solution as output. Modeling
environments are tools that interface between the Operations Research professionals and the
solvers, providing general and intuitive ways to express symbolic models. They usually offer
features that allow importing and processing data, generating problem instances for solvers,
analyzing result, and interfacing with other applications, such as Database Management Systems
(DBMS) and spreadsheets.

 GEOFFRION (1989) describes five characteristics desirable for computer-based
modeling environments to support Operations Research applications: to deal with the entire
modeling life cycle; to consider the decision makers necessities; to support the model evolution
throughout its existence; to adopt a model definition language independent from the languages
used to solve the problem; and to allow easy resource management. These characteristics act as
general guidelines of what is expected for a modeling environment.

 Additionally, MURPHY et al. (1992) present a series of representations for MIP
problems, such as matrix generators, algebraic representations, structured modeling, and
database schemas. Matrix generators, such as OMNI (HAVERLY, 2001), were the first adopted
representation. These generators provide a procedural language that allows the creation of MPS
files (IBM CORPORATION, 1975), which represent an instance of a MIP problem and are
interpreted by most solvers. While the MPS format allows efficient representation of sparse
matrices, it makes modeling and debugging hard (BROOK et al., 1988). Algebraic
representations, such as GAMS (BISSCHOP and MEERAUS, 1982) and AMPL (FOURER et
al., 1990), describe models as mathematical expressions, being quite general and concise.
Structured modeling, introduced by GEOFFRION (1987), aims at developing a general
specification to represent, in an unambiguous way, all essential elements of a variety of models.
Finally, database schemas consider two distinct but mingled requirements: the need to register
information about the mathematical model structure and the need to register the problem data
and its results.

 As one can note, a prominent feature is the separation between data and model, primarily
using database applications and spreadsheets. LEE (1991) stores mathematical models apart
from the data of problem instances. Models should be general to deal with a range of common
problems. FOURER (1997) also exploits the use of databases to handle mathematical models,

4

presenting database structures for mathematical programming models. Today, DBMSs are widely
used in organizations, managing and centralizing key information. Therefore, the decision
support systems must somehow be integrated with these information repositories.

 Going in a different direction, MAKOWSKI (2005) discusses the necessary requirements
for developing modeling environments. According to his work, the model development life cycle
is composed of the following phases: requirements elicitation, design, construction, testing, use,
review, maintenance, documentation, model analysis, results analysis, and model evolution. The
author states that the existing modeling environments only meet one or two phases of the whole
model development life cycle. Issues such as data processing, data sources documentation,
change tracking, models integration, and access control are especially critical for complex or
large-scale models. The following activities were identified as poorly supported by the existing
modeling environments: version control over the model specification, preparation of data for the
definition of parameters, generation of model instances binding the model specification with a
specific data set, and the use of multiple views to analyze the results.

 For instance, MATURANA et al. (2004) use the mathematical model as input to
automatically generate the user interface and the database structure of a decision making system.
This strategy supports agile development of Operation Research applications, increasing the
productivity and the easiness for providing solutions to the decision makers of an organization.
However, their approach lacks an underlying version control infrastructure, making it hard to
evolve the model and the generated system.

 Besides the use of databases as an integration tool for models, their respective instances
and the problem data, FOURER (1998) adopts web technology as an access infrastructure to
optimization systems. Moreover, FOURER et al. (2010) propose the use of an optimization
server that receives jobs via XML (eXtensible Markup Language) files transported through web
services. This kind of service is useful to isolate the modeling language and the solvers from the
decision making system itself. These works show how Software Engineering can be used as an
enabling technology to the construction of Operations Research applications.

 The survey and the literature review showed that the following features are relevant for
the development of modeling environments: models, instances, and data separation; integrated
databases to store models and data; interface with external software, such as solvers; graphical
user interface for data input and results analysis; and efficient communication with solvers. We
could not identify a research or commercial modeling environment for MIP that fulfills the needs
of both modelers and decision makers, allowing the interaction of such professionals throughout
the mathematical model and its data life cycle. This scenario is especially difficult because
models, instances, and data evolve over time, demanding a consistent versioning solution.

3 MANAGEMENT OF MATHEMATICAL MODELS

 In this section, we introduce our approach for managing mathematical programming
models, named GeMM. It is intended not only to provide a tool for writing mathematical models
and equations, but also to control the life cycle of a model, since its establishment and until its
use by the decision makers and evolution. GeMM adopted a client-server architecture, stores its
information in a database, provides version control to both mathematical models and associated
data, and enables information sharing among users of the system, observing concurrency control.
The remaining of this section presents the architecture of GeMM and discusses model
formulation, data management, and, finally, version control of both models and data.

5

3.1 ARCHITECTURE

 Two distinct roles in the development of mathematical programming models for
supporting decision making are considered: modeler and decision maker. The modeler is an
Operations Research professional who knows in details the modeling techniques to handle
optimization problems in a specific domain. The decision maker does not have specific
knowledge of Operations Research, but knows the domain data and has the necessary skills for
using optimization models to support decision-making processes in the organization.

 Thus, the system described in this article was designed according to a client-server
architecture. In this architecture, it is possible to have modules to meet different functions that
are interconnected through a database. Furthermore, this architecture allows the system to
support multiple users, assuming the aforementioned roles. Figure 1 shows the overall
architecture of the system. Basically, modelers interact with the application by creating and
maintaining mathematical programming models in order to solve optimization problems. On the
other hand, decision makers populate the system with domain data, with the possibility of
creating different scenarios for the same optimization problem, and visualize the results obtained
by solvers. With this structure, each user has an appropriate environment to perform her work,
either modeling or using a model, but these environments shared data through a single database.

 Another important element in the architecture is the optimization servers. For large
problems that require high processing power in order to find optimal solutions in appropriate
time, machines with dedicated hardware and software are usually used for running the
optimization processes. Furthermore, the sharing of such machines is highly desirable to solve
different problems at different moments. Since a desktop computer may not have adequate
capacity to perform the required processing, GeMM makes use of optimization servers. The
application server is responsible for managing the execution of optimization algorithms by
controlling the distribution of tasks among optimization servers that actually run the solvers.

Figure 1: Basic architecture of the system

6

3.2 MATHEMATICAL MODELING

 The main function of GeMM is to support the modeling of linear and integer
programming problems. In the GeMM approach, problem modeling is done directly in the
system, using formularies, and is stored in a database, which also stores instance data. Thus, in
this architecture, the model and the data can be shared among users, allowing integration and
collaboration during modeling. The interaction between users of GeMM is discussed in Section
3.5.

 Modeling elements are designed according to algebraic representations, especially AMPL
(FOURER et al., 1990). GeMM uses a database to store MIP models. The information and data
models are in the same database structure, but independently stored. This separation is important
because it allows the creation of different instances of the same optimization problem from a
mathematical model, by changing, for example, only the input data. GeMM uses five main
elements for modeling MIPs: sets, parameters, variables, constraints, and objective function.

 Sets are collections of well-defined and distinct objects relevant to the problem. Each set
contains indices associated with it, allowing the model to reference a generic element belonging
to the set. A very common type of set is, for example, a sequence of integers. In GeMM it is also
possible to define subsets.

 Parameters are invariants used in modeling. They consist of values directly informed by
the users (i.e., input data) or calculated from an expression. This difference exists only from the
point of view of the modeling environment, which assigns the value of the parameters before the
optimization process begins. From the point of view of the solver, all parameters are input data.
They can represent scalar values, when they are not indexed, or arrays, when they are indexed by
the elements of one or more sets.

 Variables hold values that are calculated by the optimization process. Like parameters,
variables can also be indexed by the elements of sets. A variable can be either continuous, integer
or binary, since the system allows the modeling of linear, integer, and mixed integer
programming problems. Variables may have upper and lower bounds. Constraints are
represented by linear equations or inequalities. GeMM allows the use of generating conditions
for model variables and constraints. The objective function is a linear function that should be
either maximized or minimized.

 An important feature of GeMM is the separation between the data and the mathematical
model. The structure of the GeMM database must be able to store the model, the input data, and
the results for every MIP. The data structure presented in the class diagram of Figure 2 represents
the mathematical programming model.

 In this diagram, the Project class represents a MIP to be solved. A project groups all the
model elements that must be created for the correct representation of the problem. The model
elements are represented by the class ModelElement and its subclasses in the diagram of Figure
2: Set, Variable, Constraint, Parameter, ObjectiveFunction. One or more indices can be
associated to each set, whose representation is made by the class Index. The class Indexable
generically represents the model elements that have associated indices and therefore can be
indexed by them.

 This data structure is used to handle and store mathematical models in GeMM. We
remark that it includes only the model definition, i.e., it does not address the input data and the
results. For example, it is possible to identify which sets are defined, but it is not possible to
know which elements compose these sets and what values can be assigned to the indices. The

7

structure depicted in Figure 2 also does not address the versioning model, which will be
discussed later.

3.3 DATA REPRESENTATION

 An instance of an optimization problem comprises sets of the parameter values. A solver
receives a problem instance as input, applies one or more solution methods, and returns the
results (FOURER, 2011), which are the values assigned to the variables and the objective
function value.

 As described in Section 3.1, GeMM users are divided into two main roles: decision
makers and modelers. This latter role should not change the model formulation, i.e., the
definition of the variables, constraints, and objective function, but should work with the values of
the elements of the sets, with the parameter values, and with the results.

3.3.1 DATA STRUCTURE

 Each mathematical model needs data in a different structure. A particular modeling
project may require the creation of one or more sets, whose indices can index several parameters
and variables. The approach used in GeMM associates indexing elements with the primary keys
of entities in the database. Each database entity has a set of attributes that characterize its
primary key.

 In the following, we illustrate our approach without loss of generality with a linear
programming problem in its canonical form (BAZARAA, 1977):

Minimize ∑
j=1

n

c j . x j

(1)

Subject to∑
j=1

n

aij . x j≥bi , i=1,...,m
(2)

x j≥0 j=1,...,n (3)

 The indices i and j, that appear in equations (1), (2) and (3), represent set elements. The
index i represents an element that belongs to the set I = {1, 2, ..., m}, as shown in expression (2),
and the index j denotes an element that belongs to the set J = {1, 2, ..., n}, as shown in

Figure 2: Class diagram representation of the mathematical programming model

8

expression (3). An instance of this model is defined by sets I = {1, 2, 3} and J = {1, 2} and a
tabular structure for storing them can be seen in Figure 3.

I J

1 1

2 2

3

Figure 3: Data structure of sets I and J

 Once the elements of each set are known, we can define the data structure associated with
those sets. When modeling the MIP in its canonical form we identify the parameters cj, bi, and
aij, and the variable xj. Figure 4 shows the three entities created to store the data and variable
parameters, which are: the entity whose primary key is the combined values of i and j, the entity
whose primary key is the value of i, and the entity whose primary key is the value of j.

Entity I e J Entity I Entity J

i j aij i bi j cj xj

1 1 1 1

1 2 2 2

2 1 3

2 2

3 1

3 2

Figure 4: Data structure of parameters and variables

 In this example, the parameter aij is indexed by the indices i ∈ I and j ∈ J. Therefore, the
database entity that stores the values of this parameter must have a primary key combination of
elements of the sets I and J. In the same way, we developed the data structure for the bi
parameter, which must be an entity whose primary keys are the elements of the set I. Moreover,
parameter cj and the variable xj should be entities whose primary keys are the members of set J.
Thus, the columns i and j of the entities defined in Figure 4 are foreign keys, respectively to the
columns I and J of the data structures defined in Figure 3.

 The GeMM approach enforces that, for a given mathematical programming model, there
will always be an entity database for each of the sets, where its elements are stored. The values
of the elements compound the primary key of the entity, since there are no repeated elements in
the same set. Also, there will always exist a database entity for each different combination of
indices associated with the values of parameters and variables. These entities must have an index
for each attribute that composes their primary key and another attribute for each variable or
parameter that has the same combination of indices. All variables or parameters that have the
same combination of indices, in the same order, must have a corresponding attribute in the same
database entity, as for variable xj and parameter cj, in the previous example. An entity database
without attributes associated with an index is also created to hold the values of the elements that
are not indexed, as the objective function, parameters, and non-indexed variables.

 However, this way of handling the data of mathematical programming models requires a
different data structure for each model. This occurs because each mathematical model has its

9

own characteristics, such as different set definitions and indices, different modeling elements,
and different combinations of indices that index parameters and variables. Thus, each model
managed by GeMM needs a different database scheme to store the data associated with it. As
GeMM is intended to manage many different MIPs, metamodeling is a natural solution to store
and handle the data structures needed for the models, regardless of how they are modeled and
their application area.

3.4 METAMODELING

 The idea of metamodeling the database, which was used by JEUSFELD and JOHNEN
(1994), consists in building a generic data structure to represent a logical data model into a
relational database that meets defined specifications. Figure 5 shows the data structure for
logically storing the database schemas, i.e., schemas metamodeling. This class diagram
represents the schemas of the database. A schema consists of all entities within the same domain.
The Entity class represents existing entities and is composed of attributes.

 The Attribute class represents the properties of the attributes associated with the entities
in the metamodel. This class should contain the necessary information about integrity for the
database management systems, such as the possibility of assuming a null value, for example. The
relationships between entities are represented by classes PrimaryKey and ForeignKey. The class
PrimaryKey indicates which attributes of an entity belong to their respective primary keys. The
ForeignKey indicates which entity attributes represent links with other related entities.

 Figure 5 also presents the Record class, which is the logical representation of a row of a
database table. Its role is to group the values of the attributes that compose a single record. The
Value class and its subclasses are identified only by a Record (row) and Attribute (column). It has
the function of storing the data and its subclasses are used in accordance with the attribute type:
boolean, integer, real, or string, for example. This data structure allows the identification of two
types of metamodeling classes: the classes that represent the structure (which are Schema, Entity,
Attribute, PrimaryKey, and ForeignKey) and those that represent the data (which are Record,
Value, and its subclasses).

Figure 5: Data structure for storing metamodeling schemas

10

Metamodeling allows using a unique schema database to store different data models.
GeMM uses metamodeling to work with the data structures that store and manage data from
mathematical models. The flexibility provided by metamodeling is necessary to enable changes
in the definition of the models without having to change the schema of the database, allowing
GeMM to manage more than one model in the same database. The structure proposed in GeMM
to handle data models through metamodeling is shown in Figure 6. This structure was developed
from the basic structure of metamodeling, shown in Figure 5, and adapts as necessary to manage
the data of the mathematical programming models. The classes that are subclasses of
ModelElement are used to represent the mathematical model.

 In this approach, the entities needed to represent the data structure of the mathematical
models are handled by the class Entity. As described earlier, the primary keys of entities are
attributes related to indices of the sets, which index the modeling elements. The foreign key
concept was omitted from the diagram in Figure 6, since the attributes related to the indices of
the sets are the only ones that may be foreign keys. The model elements that can receive a value,
such as parameters and variables, are associated with an attribute of an entity. The entity that
holds a given attribute is defined by the combination of indices that index the associated model
element.

Therefore, Entity, PrimaryKey, and Attribute are classes directly related to the modeling
elements and define the data schema for a particular mathematical model. Each model, once
specified, has only one data schema. Case, Record, Value, and its subclasses are used to store
data associated with the model.

The Value class is used to store a value of one model element. The Attribute class knows
the data type of the model element and the Value class knows how to store it. The model
elements that have one or more indices must have several instances of Value, one for each
combination of the values of the indices that index these elements. The Record class is
responsible for grouping all values of the same entity, having the same primary key. Finally, the

Figure 6: Data structure using metamodel

11

Case class is responsible for grouping all data in a single set of data. It allows different scenarios
with different parameter values, and hence different results, for the same mathematical model.

3.5 VERSION CONTROL

 An important feature of GeMM is the versioning of mathematical programming models
and their scenarios with associated data. GeMM allows different users to collaborate designing
and maintaining the mathematical models, managing instance of data, and optimizing problems.
GeMM has versioning as a key element in its design to accompany this interaction of users with
the mathematical models and data, and to ensure the integrity of information. Among its
responsibilities is saving the history of changes and managing the evolution of models and data
over time, which enables control over corrective and perfective maintenance.

3.5.1 MODEL VERSION CONTROL

 CONRADI and WESTFECHTEL (1998) discuss the characteristics and classifications of
version models for software configuration management. An important point of this type of
system, which includes version control, is the definition of the product space. The product space
describes the complete structure of what should be versioned. In the case of GeMM, the product
is a mathematical model consisting of model elements. It is also fundamental to define the
versioning space, which determines which items must be versioned, how versions are organized,
when new versions are created, and the granularity of the versioned items. The granularity of the
versioned items is defined as the size of the smallest versioned object.

 In the GeMM approach, the evolution of mathematical models occurs by creating
different versions of a given modeling project. A version of the modeling project is a group of
versions of the model elements that compose it. The granularity of versioning in GeMM is the
model elements, i.e., sets, parameters, variables, constraints, and objective function have their
independent versions. Each of these elements is individually versioned and the version of a
modeling project is given by the most recent version of its modeling elements. A new version is
created due to the need of modifying one or more model elements within the project.

 We used the example of a linear programming problem in its canonical form to illustrate
the versioning of mathematical models in GeMM. In this example, we created three versions of
the same mathematical model. First, we created the modeling project called “LP problem in
canonical form” and its first version, containing the sets I and J, the parameters aij and bi, the
variable xj, the constraint, and the objective function, as shown in Figure 7. At this point, all
model elements are in their first version.

 Then, suppose that we have identified an error in the model implementation of the in its
canonical form: for example, the parameter aij has been modeled as an integer and not as a real
number, as expected according to expression (3). After creation of the first version, there is still
another modification to be made with respect to the model presented in expressions (1), (2), and
(3): the costs of the variables were erroneously implemented as a constant. This second version
creates a parameter cj and changes the expression of the objective function to include this
parameter. Since the project is in its second version, so are the objective function and the
parameter cj. This change led to the creation of a second version of this modeling project, which
appears in Figure 8.

 We observe that all model elements associated with the second version are still in the first
version, except the parameter aij, cj and the objective function. The modeling elements that did
not change are associated with the first and second versions of the modeling project.

12

Figure 7: Initial version of a linear programming problem in the canonical form

Each element has its individual version, but their life cycle is always associated with a
particular modeling project. Once edited, the element version is replaced by the same version of
the project after the change. Thus, it is possible to identify which are the versions of a single
model element and, also, given a version of the modeling project, which elements were changed
in that version. It is important to notice that the versioning information related to a model
element is not altered nor replicated. The modeling project only links to each specific version on
model elements. This link is broken only when there is a change in the element and a new
version is created.

This versioning strategy is defined by CONRADI and WESTFECHTEL (1998) as
Product Versioning, in which versions of the elements are within the global version of the
modeling project. With this type of versioning, the conventional reading “Version 2 of the
objective function” should instead be read as “The objective function in the second version of the
LP problem in its canonical form”.

As a client-server and multi-user application, GeMM allows more than one user to
concurrently access a particular modeling project. This requires a policy for concurrency control
in order to prevent loss of information. According to ESTUBLIER (2001), a scenario with N
users simultaneously working over the same project leads to N+1 different product versions, one
for each user and one for the original product. If these changes occur in parallel, it is necessary to
merge all of them to generate the final product.

However, according to MENS (2002), the need to combine different versions of the same
project depends on the selected concurrency control mechanism. With pessimistic concurrency
control, in which only one user at a time can modify elements of a project via lock mechanisms,
changes do not occur in parallel and are not subject to merge. On the other hand, in optimist
concurrency control, where users change the project in parallel, the process of merging different
modifications of complex objects may become error-prone and counter-productive

LP problem in
canonical form

V1

Set I {i} – Integer : V1

Set J {j} – Integer : V1

Parameter aij – Integer : V1

Parameter b
i
 – Real : V1

Variable x
j
 – Real : V1

Constraint C
i
 : V1

Objective Function – Minimize : V1

13

(PRUDENCIO et al., 2012), being necessary to combine the syntax and the semantics of the
product in question. Due to that, GeMM adopted pessimistic concurrency control, by locking the
project that is being changed. For this reason, GeMM does not address merge of modifications.
However, the fine granularity adopted by GeMM allows the identification of differences between
two versions in terms of added, removed, or changed model elements.

Figure 8: Second version of the linear programming problem in the canonical form

 Once a user starts editing the mathematical model in GeMM, the entire project is locked
for editing. When the modification is completed, the user can release the project lock to allow
others to edit it, through the creation of a new version. Figure 9 shows the modeling project in its
third version. The creation of this version was motivated by a change being made by the user
“Modeler 1”. The earlier versions V1 and V2, which have already been released, can only be
accessed for reading. Further modifications may be made by creating a new version.

 While “Modeler 1” is still editing the third version, shown in Figure 9, the other users can
only read the model. This situation persists until “Modeler 1” releases or discards the lock. When
a version is released, it cannot be removed or edited. Thus, it is guaranteed that the whole life
cycle is registered. Before the release, elements can be freely added, changed, and removed to
the current version of the project by the user that holds the lock. However, once released, any
change in the project requires the creation of a new version.

3.5.2 DATA VERSION CONTROL

 In addition to model version control, GeMM also provides data version control. Each
user, in the role of decision maker, can create data cases for any released version of the modeling
project, once its structure cannot be further modified. Each case has its versions and the same
concept of concurrency control used for the model is applied. The product to be versioned is the
data associated with the models, namely, the elements of the sets and the parameters values.
Figure 10 shows an example of the association between data versions and model versions.

LP problem in
canonical form

V1

Set I {i} – Integer : V1

Set J {j} – Integer : V1

Parameter aij – Integer : V1

Parameter b
i
 – Real : V1

Variable x
j
 – Real : V1

Constraint C
i
 : V1

Objective Function – Minimize : V1

V2

Objective Function – Minimize : V2

Parameter c
j
 – Real : V2

Parameter a
ij
 – Real : V1

14

Figure 9: Concurrency control for a modeling project

 The concurrency control mechanism is also pessimistic. Once a data case is being edited,
it is locked and other users can only read it. When a data case is released, it can only be modified
by the creation of a new data case version. In the example shown in Figure 10, two data cases
were created for the third version of the “linear programming problem in its canonical form”,
which has been released. “Case 1” has a certain set of values for model elements, and is in the
second version. As the user “Decision Maker 1” is editing the “Case 1”, the user “Decision
Maker 2” cannot change it in parallel. This user can only view and copy its information to
another data case. In this example, the “Decision Maker 2” created “Case 2” with its own data to
edit.

 Once the versions of the data cases have been released and cannot be modified or
removed, the historical data used for making decisions is also stored. Thus, it is possible to trace
back the optimization model and the data that motivated a particular decision. This kind of
traceability is fundamental for reproducibility and auditability of the results, and is called data
provenance in the literature (FREIRE et al., 2008).

Figure 10: Versioning of a modeling project and associated data

LP problem in
canonical form

V1 V2 V3

Committed version

 Version in edition Modeler 1

Modeler 2 read

edit

read

LP problem in
canonical form

V1 V2 V3

Committed version

 Version in edition

Case 1 V1 V2

Case 2 V1

Decision
Maker 1

edit

Decision
Maker 2 edit

read

15

4 IMPLEMENTATION AND USE OF GEMM

 The previous section presented the main characteristics of our approach, while this
section details the implementation issues for the development of the modeling environment.
GeMM was implemented using the Java programming language, which has many development
tools and libraries available, in addition to being portable to different platforms. It also has
interoperability with other languages, including C and C++, for example.

 In order to illustrate how problems can be modeled in GeMM, we considered the Problem
of Scheduling Delivery Orders (PSDO) of oil products. We present the optimization model in the
following, in order to illustrate how the modeling is made in GeMM. This example shows how
users can interact with the environment to model MIPs.

 This section presents how GeMM stores and processes information of mathematical
programming models and their data in the data structures presented in the previous section, also
using PSDO as a guiding example. Subsequently, the implementation features of version control
are detailed for the cases of both the mathematical model and the data. Finally, we describe the
characteristics of server optimization, an important element of the GeMM architecture. The
servers are responsible for receiving requests for optimization of a model and a data case,
generating instances of MIPs, and passing them to solvers.

4.1 MATHEMATICAL MODELING

 In the context of the PSDO, a company is responsible for delivering products to its
customers and ensuring that their demands are met. The delivery is made by road and the
objective of the company is to schedule deliveries respecting bounds on demand, customer
inventory, and carrying capacity, minimizing the costs involved in these deliveries. It must be
solved for a given time horizon.

 The mathematical model of this problem was developed based on the inventory
management system presented by BERTAZZI et al. (2005), whose main feature is the control of
customer inventories being done through a distribution center. In this policy of inventory
management, the distribution center knows the inventory levels and the demands of their
customers. Thus, it can determine the transport policy in order to meet the constraints of storage
and demand of its customers, minimizing the total cost of transportation. BERTAZZI et al.
(2005) show that this policy inventory management significantly reduces transportation costs
compared to the traditional model, in which each client manages its inventory alone.

 The problem of scheduling the delivery of orders is an integer programming problem.
The time horizon is split into discrete periods. Each period is referenced by an index t of the set
PERIODS. We use the index c to refer to a customer of the set CUSTOMERS, and the index p to
represent a product of the set PRODUCTS. The main decision variables are Deliverypct, which
represents the quantity in kilograms of product p to be delivered to customer c in period t; and
Stockpct, which denotes the inventory in kilograms of product p in customer c in period t; and
IfDeliverypct, a binary variable that indicates whether or not to deliver product p to customer c in
period t. The objective of this problem is to reduce the transportation cost, which minimizes the
total number of deliveries.

 The main input data for this problem are: Demandpct, the demand for product p of
customer c in period t; TransportCapacityt, the maximum amount that can be transported in
period t; InitialStockpc, the initial inventory of product p for customer c; MinStockpc and
MaxStockpc, lower and upper bounds on the inventory of product p for customer c.

16

 To introduce this model in GeMM, the first step is to create a modeling project. At this
time, the only attributes required are the name and description of the modeling project, as shown
in Figure 11.

Figure 11: Modeling project

 GeMM’s screens have a standard format, similar to the screen shown in Figure 11. At the
top there are fields to filter the elements in the list that appears below and contains elements of
the same type. When selecting an element from the list, the form displays its details. Through the
form, it is also possible to edit or to insert new elements in the list. Fields marked in bold and
with an asterisk are required, such as the field Name in Figure 11. Commands that can be applied
to the selected element appear at the bottom of the screens.

 Next, the model is built by defining each element. The construction of the model is done
through the creation of the elements in the formularies of the GeMM, where each model element
has a specific screen where the user can input its attributes. Unlike some modeling languages,
such as GAMS (BISSCHOP; MEERAUS, A., 1982) and AMPL (FOURER et al., 1990), in
which the mathematical models are textually created through a specific language, GeMM builds
the model using a formulary for each one modeling element.

 Usually, the first elements to be defined are sets and their respective indexes. Other
elements, like parameters, variables, and constraints, may be indexed by indexes defined for
these sets. Three sets have been defined for the model of the PSDO: PRODUCTS,
CUSTOMERS, and PERIODS, with indexes p, c, and t, respectively, as shown in Figure 12. The
attributes of a set are its name, its description, the definition of the data type elements, and their
index identifiers. The possible data types are integers and real numbers, strings, and dates.
Subsets can also be defined. At this time, only the definition of the sets is done, as their elements
are not part of the model, but of the data cases.

 Each parameter has a name, a description, and a data type. Again, integers, real numbers,
strings, and dates are the available data types. There are two types of parameters: primary, whose
values are defined directly in the data case (such as input data) or calculated, whose values are
evaluated from expressions that may have constants and other parameters.

 The arithmetic operators that can be used in expressions of calculated parameters are
shown in Table 1. The analysis of expressions in GeMM is done with the help of the open source
library JEP (JEP JAVA, 2011). It uses the operators of Table 1 and allows the addition of new
functions by creating a class in Java that implements the interfaces defined by the JEP API.

Filter

List of elements

Select element
detail

Commands

17

Figure 12: Sets of model

 Variables are declared in GeMM, in the same way as parameters. They can be indexed by
the indices of the sets and their types may be continuous, integer, or binary. This model involves
two types of variables: binary (IfDeliverypct) and continuous (Deliverypct and Stockpct). The
modeler should also define upper and lower limits for each variable.

Table 1: Arithmetic operators

Operator Description

+ Sum

- Subtraction

% Modulo

/ Division

* Multiplication

^ Power

() Parentheses

The main attributes of a constraint are its description, indexes, the definition of the left-
hand side (LHS) expression and the right-hand side (RHS) expression. GeMM supports both
equality (=) and inequality (≤ or ≥) constraints. With the information of the constraints, GeMM
generates its representation in LaTeX (LAMPORT, 2011).

 The objective function (maximization or minimization) must have a name, a description
and the coefficients of the variables. GeMM also generates the representation in LaTeX of its
expression.

 This form-based modeling strategy adopted by GeMM has the advantage of not requiring
knowledge of a modeling language or a programming language. As it is more structured than a
textual language, it guides the modeler through the necessary information, alleviating problems
with incomplete model definitions. However, GeMM could be easily adapted to allow importing
models defined in textual languages.

18

4.1.1 GENERATION CONDITIONS

 Generation conditions are important for model building (FOURER et al., 1990).
Generation conditions are boolean expressions that can use constants, parameters, and indices to
determine the condition in which the variables and constraints must be generated for a specific
instance of a MIP. Generation conditions can have arithmetic operators and logical and
comparison operators, that is presented in Table 2. GeMM also allows the use of generation
conditions for variables used in constraints and in the objective function.

Table 2: Logical and comparison operators

Comparison Logical

Operator Description Operator Description

> Greater than ! Not

>= Greater than or equal to && And

< Less than || Or

<= Less than or equal to

 == Equal to

!= Not equal to

4.1.2 MODEL DOCUMENTATION

 GeMM allows the automatic generation of a LaTeX documentation with all data provided
about the problem, obtained from the information provided by users during the development of a
model. The attributes, such as name and description of the modeling elements in GeMM screens,
allow the model to be documented during development, avoiding an extra effort for this task.

4.1.3 REPRESENTATION OF THE MATHEMATICAL MODEL

 In Section 3 we presented the data structure used to represent mathematical models. This
representation is used by GeMM both for processing the application data and for storing it in a
database. These structures are completely transparent to GeMM users, because the interaction
with the modeling environment is done through forms.

 Figure 13 shows the class diagram that represents mathematical models in GeMM. This
diagram details how GeMM treats and stores models in a database. For better understanding of
the data structures, we used UML class diagrams (BOOCH et al., 2005) with the data types of
the Java language. Thus, the description of the treatment of the mathematical model is made by
classes, which are mapped to database tables.

 The main class is the Project, which aggregates all the elements of a model. It is
composed of model elements that are represented by the classes ModelElement and
ModelElementVersion, whose difference regards the treatment of versioned attributes. Although
version control in GeMM will be treated later in this section, class ModelElementVersion is
important at this time, since it controls all the attributes of model elements. Despite not having
attributes in ModelElement class, since all of them belong to ModelElementVersion, it is
important to identify that different object versions belong to the same model element. The basic
attributes of each modeling elements is its name, which must be a unique identifier, and its
description, used to document the user model.

The subclasses of ModelElementVersion are Set, Indexable, and ObjectiveFunction. The
Set class represents the sets that can be created in a mathematical model. Each set may have

19

different indices, represented by the Index class. Indices are used to refer to an element of a
given set in the model, so an index must have unique identifiers. The ObjectiveFunction class
has the attribute direction, which determines whether the problem is of maximization or
minimization.

 The Indexable class represents the modeling elements that can receive an index in its
definition. The relationship between an index and the Indexable class should be ordered, since
the order of the indices is important during the evaluation of the expressions. Model elements
that can receive indices are: Parameter, Variable, and Constraint. The class diagram shown in
Figure 13 describes two types of parameters: Primary and Calculated. It also identifies three
types of variables: Continuous, Integer, and Binary. The Variable class has expressions for the
upper and lower limits, and, optionally, a generation condition. The third Indexable type is
Constraint, which has an expression of its RHS and may also have a generation condition.

 Finally, the class Equation and its derivatives, EquationConstraint and EquationOF,
represent the expression of the LHS of constraints, as well as the objective function. The
EquationConstraint class represents the terms of the LHS of the constraints. It refers to an object
of the Variable class and has an expression of the coefficient of such term in the constraint.
Likewise, the EquationOF class represents expression terms of the objective function. It refers to
an object of the Variable class and also has an expression of the coefficient of such term in the
objective function. Whenever GeMM generates an instance of a MIP to the solver, both the LHS
of the constraints and the expression of the objective function are interpreted as the sum of terms
composed of the variables and their coefficients. The coefficients can be expressions containing
constants, parameters, and operators.

Figure 13: Class diagram of the mathematical model

20

 The terms of the equations may also have a generation condition, indicating a situation
where a particular term exists in a constraint or in the objective function. The relationship
between Equation and Index, which represents the indices of a particular variable in the LHS or
in the objective function, have the order attribute, since the order of the indexes has significance
in modeling.

4.2 DATA CASES

 According to FOURER et al. (1990), the values of the elements in sets and parameters,
which compose a data case, must be combined with a mathematical model to generate an
instance of a MIP.

 Once model of the problem of scheduling delivery orders has been implemented, GeMM
automatically creates the data structure (to store the information) and the screens (for data entry
and viewing results). Figure 14 shows the screen to input the values of primary parameters of the
model. Through these screens the decision makers can enter and edit parameter values that are
necessary for the problem optimization.

Figure 14: Data of primary parameters

 With the screens generated by GeMM, it is possible to provide the necessary data in order
to create a problem instance, which is afterwards transferred to a solver. In situations where a
huge amount of data must be informed, GeMM allows the massive inclusion of data via the
command “Massive Insert”, which can be seen in Figure 14. With this command, the data is
imported from text files or spreadsheets. GeMM also generates the screens for displaying the
results. It shows the summary of the results, with the values of the objective function and of the
variables.

4.2.1 REPRESENTATION OF DATA CASES

 To treat the data cases, the structure is capable of working with any model that can be
prepared using GeMM. Figure 15 shows the class diagram for representing data cases. This class
diagram shows in detail how GeMM implements the data cases and how they are persisted in a
database. We also use UML class diagrams with the data types of the Java language to detail the
implementation.

21

 As described in Section 3.4, GeMM uses the concept of metamodeling to treat the data
case of the mathematical models, since each different model needs its data in a specific structure.
Thus, with the use of metamodeling, GeMM has a single database schema to work with any MIP
model.

Figure 15: Class diagram of data cases

 The main classes are Case and CaseVersion. Case represents a specific scenario created
by a user (a decision maker), and has only a name and a description. A data case belongs to a
particular version of the modeling project in GeMM. Each data case can have multiple versions,
which are represented by the class CaseVersion.

 The class IndexValue represents the possible values for the indices, i.e., the elements
belonging to the sets. The values of the elements of the sets are associated with a specific version
of a data case. Its subclasses IndexValueInteger, IndexValueReal, IndexValueString, and
IndexValueDate are used to implement the data type defined for the set. The Entity, Attribute, and
PrimaryKey classes allow the connection of the mathematical model with the metamodeling data
structure. They have no direct relationship with the information of data cases, but represent the
metamodeling data structure. Each different combination of indices must be associated with an
object of the Entity class. In the example of the PSDO there are basically three different entities:
the entity of model elements indexed only by t, by p and c, and by the p, c and t.

 The PrimaryKey class indicates which indices of an entity represent the primary key. It
has an attribute order, since the order of the indices of the modeling elements is important.
Modeling elements that are indexed by the same index, but in a different order, should be
associated with different entities. The PrimaryKey class relates the Entity class with the Set class.
The Attribute class is a modeling element, which is indexed by the combination of specific
indices of the entity it belongs. Thus, Attribute has a particular relationship with Indexable whose
subclasses are Constraint, Variable and Parameter, and Entity. The Attribute class is analogous
to a column in a database table.

22

 In the example of the PSDO, the attribute indexed only by t is the parameter
TransportCapacityt. The primary key of this entity is the index t. The attributes indexed by p and
c are the parameters InitialStockpc, MinStockpc and MaxStockpc. The primary key of this entity is
given by indices p and c. Finally, the attributes indexed by p, c and t are the variables Deliverypct,
Stockpct and IfDeliverypct and the parameter Demandpct. The primary key of this entity is given by
indices p, c and t. Figure 16 shows a class diagram that represents the structure for storing the
model data of PSDO. GeMM generates theses classes to treat the instances of this model.

 The attributes of metamodel entities, i.e., the values of parameters, variables, and the
LHS evaluated constraints, are treated by class AttributeValue and its subclasses
AttributeValueBoolean, AttributeValueDate, AttributeValueInteger, AttributeValueReal, and
AttributeValueString. Subclasses of AttributeValue are used according to the data type defined for
the parameters or the type of variables and constraints. The Record class is used to group all the
attributes that are indexed by the same index value in an entity. An object of this class represents
a database record, or a row of a table. The RecordIndex class is a ternary relationship between
Record, IndexValue, and PrimaryKey, which is used to store the index values that uniquely
identify a specific record of an entity.

 Classes IndexValue, Record, RecordIndex, and AttributeValue of the class diagram shown
in Figure 15 are directly related to a version of a data case. The objects of these classes vary with
different data cases and versions of the same mathematical model. The classes Entity,
PrimaryKey, and Attribute represent the metamodeling data structure to handle the data cases of
a model. Thus, the objects of those classes represent the data structure of a given mathematical
model. They do not change if the mathematical model is not changed, as the same objects are
capable of dealing with any data case.

4.3 VERSION CONTROL

 Besides allowing the modeling of linear and integer programming problem and
generating screens and data structures to handle the data cases of specific optimization problems,
GeMM also provides version control. As discussed before, version control is applied for both
mathematical models and their data cases.

Figure 16: Class diagram of the entities of PSDO

23

4.3.1 VERSION CONTROL OF MATHEMATICAL MODELS

 Versioning is handled at fine grain and is based on the entities of the domain. When
versioning at fine grain, we are allowed to individually control each model element, assigning
independent version numbers when some change occurs. Class ModelElementVersion, which can
be seen in the class diagram shown in Figure 17, represents the concrete versions of model
elements and their attributes that are under version control. The ModelElement class represents a
particular model element in a mathematical model, regardless of its versions. It clusters the
versions of the same model element, as well as all model element attributes are under version
control. Thus, if a model element is renamed, for example, GeMM considers it as a change that
motivates the creation of a new model element version associated with the same model element,
keeping track of the old names.

Figure 17: Class diagram version control of mathematical models

 The class diagram shown in Figure 17 represents the data structure used to version
control of mathematical models. As seen before, the Project class is the identification of the
optimization problem being solved. It has attributes such as name and description. The details of
the mathematical model are associated with a version of the modeling project, represented by
class Version. Each version is associated with a GeMM user. The class ModelElementVersion has
two relationships with the class Version: one that indicates the version of the model element and
another that indicates which versions of the model project contains the model element. Thus,
GeMM considers model elements as unities of versioning (MURTA et al., 2007), once each
model element within a modeling project has its own version history. The association named
“element in project version” in the diagram of Figure 17 indicates which versions of model
elements belong to a version of the modeling project. The version of the model element itself is
represented by the association “version of the element” in the same diagram. Thus, given a
version of the modeling project, GeMM can identify the associated mathematical model and
enables the creation of data cases for it.

 GeMM implements pessimistic concurrency control on mathematical models using the
“can edit” attribute of Version class. This attribute indicates when the version of a modeling
project may or may not be edited. If it can be edited, the change can only be made by the user
who created the version. Any other user cannot edit the project until the current user commits or

24

discards his version. Each modeling project can have only one editable version at the same time,
since the current version of GeMM does not address parallel editing for the same modeling
project. When the modeling project does not have any editable version, any user can create a new
version. If this is the first version of the modeling project, GeMM creates an empty version.
Otherwise, GeMM creates a new version associated with the versions of the model elements that
belong to the previous project version. This way, it inherits all previous model elements and
allows the user to perform modifications.

 The version numbers of the model elements are equal or less than the version number of
the modeling project, once the creation or edition of a model element implies the edition of the
modeling project. This strategy is also adopted in other conventional version control systems,
such as Subversion (THE APACHE SOFTWARE FOUNDATION, 2011). GeMM uses two basic
commands: “commit” and “discard”. In the case of the “commit” command, GeMM understands
that the version is finished and changes its “can edit” attribute to false, indicating that any user
can only edit the model element by creating a new version. Thus, the version that was committed
is unchangeable. In the case of the “discard” command, GeMM deletes the version of the
modeling project that is under edition. This command can only be applied over versions that are
editable and is restricted to the user who created it. Versions of modeling projects that have been
committed can no longer be altered, removed, or discarded, ensuring consistency to the change
history of mathematical models. A user can always make changes over modeling projects by
creating a new version.

4.3.2 VERSION CONTROL OF DATA CASES

GeMM also implements versioning of data cases that can be created for the mathematical
models. The class diagram shown in Figure 18 describes the data structure that implements the
versioning of data cases. The CaseVersion class represents a version of a given data case. In the
same way we do with mathematical models, all information contained in the data cases are
associated with a particular version. Consequently, the unity of versioning is a data case, and
then the data within a case does not have individual version numbers and are always associated
with a particular version of a data case. The Case class represents only the identification of a
case of a mathematical model. Its attributes are just name and description, which are not
versioned. Similarly, the CaseVersion class is to Case as Version is to the Project.

Figure 18: Class diagram version control of data cases

25

 Version control and concurrency are done in the same way as for mathematical models.
The “can edit” attribute inherited from Version indicates when a version of the data case can be
edited or not. When the value of this attribute is true, only the user who created the version can
edit, commit, or remove it. When the user commits the version of the data case, another user can
edit it, creating a new version of the case. This way, a new version is always necessary to edit the
data case. If the case does not have any version, GeMM creates a blank version. Otherwise,
GeMM creates a new version referencing all data presented in the last existing version. The
removal of the versions of data cases can only be done by the user who created them and only
before committing, because once it is committed it can no longer be deleted or changed, thus
maintaining the historical data associated with mathematical models. This mechanism enforces
that only the latest version can be removed or changed, if it has not already been committed.

4.4 OPTIMIZATION SERVERS

 The optimization servers are responsible for performing the optimization requests for the
MIP modeled using GeMM. The process starts when GeMM receives a request from a user to
optimize a version of a data case. It generates an instance of an MIP from the mathematical
model and data case, transfers this instance to a solver, receives the problem solution, and returns
this solution to the user. According to the architecture shown in Figure 1, the optimization
servers can be deployed on separate computers. GeMM also allows a monolithic installation, in
which the modeling application and the optimization servers are in the same computer.

 Independently of the deployment strategy, the optimization server is responsible to handle
requests of optimization and to communicate with a solver. However, when the modeling
application and the optimization server are deployed in different machines, requests to solve data
cases are made using web services through the network. The web service is used only to notify
the server that a case should be optimized. The information regarding the data case and its
mathematical model are obtained directly from the database, as shown in Figure 19. The results
are also stored in the database.

 Figure 20 shows a class diagram that represents an instance of an MIP. GeMM uses the
mathematical model, whose structure is depicted diagrammatically in Figure 13, and the data
case, whose structure is depicted diagrammatically in Figure 15, to generate an instance of the
MIP. Although the class diagram shown in Figure 13 has some classes with the same name of the

Figure 19: Scheme for performing optimizations

26

class diagram shown in Figure 20, they are different, since the first diagram shows the definition
of the mathematical model and the second is an instance of an MIP.

 With the data structure shown in Figure 20, GeMM can send the data to the solvers
through their API, when it is installed and configured in the same machine, or generate files in
the format developed for CPLEX, but also used by other solvers.

Figure 20: Class diagram for representing an instance of a LP problem

5 CONCLUSION

 The main goal of this paper is to describe the development of the GeMM environment for
modeling linear and integer programming problems. It aims not only to treat the modeling
activity, but also to support the management of the life cycle of mathematical models and
associated data.

 According to MAKOWSKI (2005), features such as version control and configuration
management of the mathematical models are poorly explored, although they are quite relevant.
We could also conclude that characteristics such as the separation of data and model, the use of
databases, the integration with other software, the use of graphical user interfaces for data entry
and results analysis (both performed by decision makers), and the efficient communication with
solvers are critical in developing this type of application.

 The main contributions of this work, compared with the existing modeling tools, are its
architecture in a client-server style, which allows the sharing of information and interaction
among modelers and decision makers, and its ability to control the evolution of mathematical
models and data cases through version control. GeMM therefore presents two special differential
features: GeMM is a multiuser environment (in which people can work on different versions
through an integrated environment) and is not concerned by conflicting changes (thanks to
version control). Other modeling tools do not support these features, requiring users to externally
perform this control.

 The use of version control brings concepts of Software Engineering to mathematical
modeling. It helps on managing the life cycle of models and data used to obtain the results,

27

which are essential in the decision making process of an organization. Such control leverages
auditing the results, since all results are associated with a particular version of a model and a
particular version of a data case. Moreover, GeMM automatically generates an application from
a mathematical model for the input data and results analysis. The proper treatment of data cases
and their versions allows GeMM users to perform various analyses on models without modifying
their definitions.

 The GeMM architecture also segregates models, data cases, and solvers. This separation
is recommended by RAMIREZ et al. (1993). The use of metamodeling to store information of
mathematical models and the associated data in databases also provides contributions to the
treatment of general persistence of mixed integer programming problems. FOURER (1997) and
DUTTA and FOURER (2008) use relational databases to store specific problems, with structures
that meet a given problem or class of problems. In these cases, for each model, a new database
schema must be created. GeMM uses the same database schema for storing different data
models. Despite being in the same structures, they are logically separated.

 An important contribution of this work is the structure, shown in Figure 13, to treat linear
and integer programming models. This structure allowed a general representation of the MIPs
and was the basis for the data processing through metamodeling and for the versioning of
mathematical models. Through this data structure, GeMM makes problem modeling independent
of the interface with users. We adopted formularies to implement such interface in the current
version of GeMM, but this interface can be replaced since the representation of the problem is
made by the structure shown in Figure 13.

 Another important feature provided by GeMM is the generation of the documentation of
mathematical models in the LaTeX format. The mathematical representation of the objective
functions and constraints proved to be very useful to understand and document models. This
documentation can be exported as a PDF file, which completely describes the mathematical
model.

REFERENCES

BAZARAA, M., Linear programming and network flows. Wiley, New York, 1977.

BERTAZZI, L.; PALETTA, G.; SPERANZA, M. G., “Minimizing the total cost in an
integrated vendor—managed inventory system”, Journal of Heuristics 11 (2005), 393–419.

BISSCHOP, J.; MEERAUS, A., “On the development of a general algebraic modeling system
in a strategic planning environment”, Mathematical Programming Studies 20 (1982), 1–29.

BOOCH, G.; JACOBSON, I.; RUMBAUGH, J., “The Unified Modeling Language User
Guide”. Addison-Wesley, Upper Saddle River, 2005.

BROOK, A.; KENDRICK, D.; MEERAUS, A., “GAMS, A User’s Guide”, ACM SIGNUM
Newsletter 23 (1988), 10–11.

CONRADI, R.; WESTFECHTEL, B., “Version models for software configuration
management”, ACM Computing Surveys 30 (1998), 232–282.

DUTTA, G.; FOURER, R., “Database structure for a class of multi-period mathematical
programming models”, Decision Support Systems 45 (2008), 870–883.

28

ESTUBLIER, J., “Software configuration management: a roadmap”, Proceedings of the
22nd International Conference on Software Engineering, Limerick, pages 279-289, 2000.

ESTUBLIER, J., “Objects control for software configuration management”. Lecture Notes in
Computer Science 2068 (2001), 359-373.

FOURER, R., “Database structures for mathematical programming models”, Decision
Support Systems 20 (1997), 317–344.

FOURER, R., “Predictions for web technologies in optimization”, INFORMS Journal on
Computing 10 (1998), 388–389.

FOURER, R., “Software survey: Linear programming”, OR/MS TODAY 38 (2011), 60–69.

FOURER, R.; GAY, D. M.; KERNIGHAN, B. W., “A modeling language for mathematical
programming”, Management Science 36 (1990), 519–554.

FOURER, R.; MA, J.; MARTIN, K., “Optimization services: A framework for distributed
optimization”, Operations Research 58 (2010), 1624–1636.

FREIRE, J.; KOOP, D.; SANTOS, E.; SILVA, C., “Provenance for computational tasks: A
survey”, Computing in Science & Engineering 10 (2008), 11–21.

GEOFFRION, A. M., “An introduction to structured modeling”, Management Science 33
(1987), 547–588.

GEOFFRION, A. M., “Computer-based modeling environments”, European Journal of
Operational Research 41 (1989), 33–43.

HAVERLY, C. A., “OMNI model management system”, Annals of Operations Research
104 (2001), 127–140.

IBM CORPORATION, IBM mathematical programming language extended 370 (MPSX
/ 370), Program Reference Manual, 1975.

JEP JAVA. Jep Java - Math Expression Parser Open Source, online reference available at
http://sourceforge.net/projects/jep/, last access in July 13, 2014.

JEUSFELD, M. A.; JOHNEN, U. A., “An executable meta model for re-engineering of
database schemas”, Proceedings of the 13th International Conference on the Entity-
Relationship Approach, Manchester, pages 533–547, 1994.

KITCHENHAM, B., Procedures for performing systematic reviews, Technical Report,
Keele University, Staffordshire, 2004.

LAMPORT, L., LaTeX, online reference available at http://www.latex-project.org/, last
access in July 13, 2014.

LEE, J. S., “A model base for identifying mathematical programming structures”, Decision
Support Systems 7 (1991), 99–105.

MAKOWSKI, M., “A structured modeling technology”, European Journal of Operational
Research 166 (2005), 615–648.

MATURANA, S.; FERRER, J. C.; BARAÑAO, F., “Design and implementation of an
optimization-based decision support system generator”, European Journal of Operational
Research 154 (2004), 170–183.

MENS, T., “A state-of-the-art survey on software merging”, IEEE Transactions on
Software Engineering 28 (2002), 449–462.

29

MURPHY, F. H.; STOHR, E. A.; ASTHANA, A., “Representation schemes for linear
programming models”, Management Science. 38 (1992), 964–991.

MURTA, L.; OLIVEIRA, H.; DANTAS, C.; LOPES, L.; WERNER, C., “Odyssey-SCM: An
integrated software configuration management infrastructure for UML models”, Science of
Computer Programming 65 (2007), 249–274.

PRESSMAN, R., Engenharia de software, McGraw-Hill, São Paulo, 2006.

PRUDÊNCIO, J. G.; MURTA, L.; WERNER, C.; CEPÊDA, R., “To lock or not to lock: That
is the question”, Journal of Systems and Software 85 (2012), 277-289.

RAMIREZ, R.; CHING, C.; ST. LOUIS, R. D., “Independence and mappings in model-based
decision support systems”, Decision Support Systems 10 (1993), 341–358.

THE APACHE SOFTWARE FOUNDATION, Subversion, online reference available at
http://subversion.apache.org/, last access on July 13, 2014.

